home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_1 / 1-4-3.tut < prev    next >
Unknown  |  1996-08-21  |  42.3 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | c0 9c 00 00 48 0c 00 00 |TUTOR 06|....H...|
|00000010| 00 17 4f 08 0d 0b 00 57 | 72 6f 6e 67 2e 20 20 57 |..O....W|rong. W|
|00000020| 65 20 73 6f 6c 76 65 20 | 74 68 65 20 67 69 76 65 |e solve |the give|
|00000030| 6e 20 65 71 75 61 74 69 | 6f 6e 20 61 73 20 66 6f |n equati|on as fo|
|00000040| 6c 6c 6f 77 73 2e 12 30 | 0d 0a 00 20 20 20 20 20 |llows..0|... |
|00000050| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 11 33 78 20 | .22... | .3x |
|00000060| 20 11 31 2d 20 31 32 11 | 33 78 20 11 31 2b 20 33 | .1- 12.|3x .1+ 3|
|00000070| 36 20 3d 20 30 20 20 20 | 20 20 20 20 20 20 20 20 |6 = 0 | |
|00000080| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 47 69 | | .2.1Gi|
|00000090| 76 65 6e 20 65 71 75 61 | 74 69 6f 6e 12 30 0d 0a |ven equa|tion.0..|
|000000a0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000000b0| 20 20 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | 2... | |
|000000c0| 11 31 28 11 33 78 20 11 | 31 2d 20 36 29 20 20 3d |.1(.3x .|1- 6) =|
|000000d0| 20 30 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 0 | |
|000000e0| 20 20 20 20 20 20 20 11 | 32 12 31 46 61 63 74 6f | .|2.1Facto|
|000000f0| 72 12 30 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |r.0.....|. |
|00000100| 20 20 20 20 20 20 11 33 | 78 20 11 31 2d 20 36 20 | .3|x .1- 6 |
|00000110| 3d 20 30 20 20 20 11 34 | 35 35 36 20 20 20 11 33 |= 0 .4|556 .3|
|00000120| 78 20 11 31 3d 20 36 20 | 20 20 20 20 20 20 11 32 |x .1= 6 | .2|
|00000130| 12 31 53 65 74 20 72 65 | 70 65 61 74 65 64 20 66 |.1Set re|peated f|
|00000140| 61 63 74 6f 72 20 65 71 | 75 61 6c 20 74 6f 20 30 |actor eq|ual to 0|
|00000150| 12 30 0d 0a 00 0d 0b 00 | 11 31 12 30 54 68 65 20 |.0......|.1.0The |
|00000160| 67 69 76 65 6e 20 65 71 | 75 61 74 69 6f 6e 20 68 |given eq|uation h|
|00000170| 61 73 20 6f 6e 65 20 72 | 65 70 65 61 74 65 64 20 |as one r|epeated |
|00000180| 73 6f 6c 75 74 69 6f 6e | 3a 20 11 33 78 20 11 31 |solution|: .3x .1|
|00000190| 3d 20 36 2e 0d 0a 00 00 | 17 4f 03 0d 0b 00 52 69 |= 6.....|.O....Ri|
|000001a0| 67 68 74 2e 20 20 54 68 | 65 20 67 69 76 65 6e 20 |ght. Th|e given |
|000001b0| 65 71 75 61 74 69 6f 6e | 20 68 61 73 20 6f 6e 65 |equation| has one|
|000001c0| 20 72 65 70 65 61 74 65 | 64 20 73 6f 6c 75 74 69 | repeate|d soluti|
|000001d0| 6f 6e 3a 20 11 33 78 20 | 11 31 3d 20 36 2e 0d 0a |on: .3x |.1= 6...|
|000001e0| 00 00 17 4f 08 0d 0b 00 | 57 72 6f 6e 67 2e 20 20 |...O....|Wrong. |
|000001f0| 57 65 20 73 6f 6c 76 65 | 20 74 68 65 20 67 69 76 |We solve| the giv|
|00000200| 65 6e 20 65 71 75 61 74 | 69 6f 6e 20 61 73 20 66 |en equat|ion as f|
|00000210| 6f 6c 6c 6f 77 73 2e 12 | 30 0d 0a 00 20 20 20 20 |ollows..|0... |
|00000220| 20 20 11 32 32 0d 0b 00 | 20 20 20 20 20 11 33 78 | .22...| .3x|
|00000230| 20 20 11 31 2d 20 31 32 | 11 33 78 20 11 31 2b 20 | .1- 12|.3x .1+ |
|00000240| 33 36 20 3d 20 30 20 20 | 20 20 20 20 20 20 20 20 |36 = 0 | |
|00000250| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 12 31 47 | | .2.1G|
|00000260| 69 76 65 6e 20 65 71 75 | 61 74 69 6f 6e 12 30 0d |iven equ|ation.0.|
|00000270| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000280| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00000290| 20 11 31 28 11 33 78 20 | 11 31 2d 20 36 29 20 20 | .1(.3x |.1- 6) |
|000002a0| 3d 20 30 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |= 0 | |
|000002b0| 20 20 20 20 20 20 20 20 | 11 32 12 31 46 61 63 74 | |.2.1Fact|
|000002c0| 6f 72 12 30 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |or.0....|.. |
|000002d0| 20 20 20 20 20 20 20 11 | 33 78 20 11 31 2d 20 36 | .|3x .1- 6|
|000002e0| 20 3d 20 30 20 20 20 11 | 34 35 35 36 20 20 20 11 | = 0 .|4556 .|
|000002f0| 33 78 20 11 31 3d 20 36 | 20 20 20 20 20 20 20 11 |3x .1= 6| .|
|00000300| 32 12 31 53 65 74 20 72 | 65 70 65 61 74 65 64 20 |2.1Set r|epeated |
|00000310| 66 61 63 74 6f 72 20 65 | 71 75 61 6c 20 74 6f 20 |factor e|qual to |
|00000320| 30 12 30 0d 0a 00 0d 0b | 00 11 31 12 30 54 68 65 |0.0.....|..1.0The|
|00000330| 20 67 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 20 | given e|quation |
|00000340| 68 61 73 20 6f 6e 65 20 | 72 65 70 65 61 74 65 64 |has one |repeated|
|00000350| 20 73 6f 6c 75 74 69 6f | 6e 3a 20 11 33 78 20 11 | solutio|n: .3x .|
|00000360| 31 3d 20 36 2e 0d 0a 00 | 00 17 4f 08 0d 0b 00 57 |1= 6....|..O....W|
|00000370| 72 6f 6e 67 2e 20 20 57 | 65 20 73 6f 6c 76 65 20 |rong. W|e solve |
|00000380| 74 68 65 20 67 69 76 65 | 6e 20 65 71 75 61 74 69 |the give|n equati|
|00000390| 6f 6e 20 61 73 20 66 6f | 6c 6c 6f 77 73 2e 12 30 |on as fo|llows..0|
|000003a0| 0d 0a 00 20 20 20 20 20 | 20 11 32 32 0d 0b 00 20 |... | .22... |
|000003b0| 20 20 20 20 11 33 78 20 | 20 11 31 2d 20 31 32 11 | .3x | .1- 12.|
|000003c0| 33 78 20 11 31 2b 20 33 | 36 20 3d 20 30 20 20 20 |3x .1+ 3|6 = 0 |
|000003d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003e0| 20 20 11 32 12 31 47 69 | 76 65 6e 20 65 71 75 61 | .2.1Gi|ven equa|
|000003f0| 74 69 6f 6e 12 30 0d 0a | 00 20 20 20 20 20 20 20 |tion.0..|. |
|00000400| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0b 00 20 20 | | 2... |
|00000410| 20 20 20 20 20 20 20 20 | 11 31 28 11 33 78 20 11 | |.1(.3x .|
|00000420| 31 2d 20 36 29 20 20 3d | 20 30 20 20 20 20 20 20 |1- 6) =| 0 |
|00000430| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000440| 32 12 31 46 61 63 74 6f | 72 12 30 0d 0a 00 0d 0b |2.1Facto|r.0.....|
|00000450| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 |. | .3|
|00000460| 78 20 11 31 2d 20 36 20 | 3d 20 30 20 20 20 11 34 |x .1- 6 |= 0 .4|
|00000470| 35 35 36 20 20 20 11 33 | 78 20 11 31 3d 20 36 20 |556 .3|x .1= 6 |
|00000480| 20 20 20 20 20 20 11 32 | 12 31 53 65 74 20 72 65 | .2|.1Set re|
|00000490| 70 65 61 74 65 64 20 66 | 61 63 74 6f 72 20 65 71 |peated f|actor eq|
|000004a0| 75 61 6c 20 74 6f 20 30 | 12 30 0d 0a 00 0d 0b 00 |ual to 0|.0......|
|000004b0| 11 31 12 30 54 68 65 20 | 67 69 76 65 6e 20 65 71 |.1.0The |given eq|
|000004c0| 75 61 74 69 6f 6e 20 68 | 61 73 20 6f 6e 65 20 72 |uation h|as one r|
|000004d0| 65 70 65 61 74 65 64 20 | 73 6f 6c 75 74 69 6f 6e |epeated |solution|
|000004e0| 3a 20 11 33 78 20 11 31 | 3d 20 36 2e 0d 0a 00 00 |: .3x .1|= 6.....|
|000004f0| 17 4f 09 0d 0b 00 57 72 | 6f 6e 67 2e 20 20 57 65 |.O....Wr|ong. We|
|00000500| 20 73 6f 6c 76 65 20 74 | 68 65 20 67 69 76 65 6e | solve t|he given|
|00000510| 20 65 71 75 61 74 69 6f | 6e 20 61 73 20 66 6f 6c | equatio|n as fol|
|00000520| 6c 6f 77 73 2e 12 30 0d | 0a 00 20 20 20 20 20 20 |lows..0.|.. |
|00000530| 20 20 11 32 32 0d 0b 00 | 20 20 20 20 20 11 31 32 | .22...| .12|
|00000540| 35 11 33 78 20 20 11 31 | 3d 20 31 36 20 20 20 20 |5.3x .1|= 16 |
|00000550| 20 20 20 20 20 20 11 32 | 12 31 47 69 76 65 6e 20 | .2|.1Given |
|00000560| 65 71 75 61 74 69 6f 6e | 12 30 0d 0a 00 0d 0b 00 |equation|.0......|
|00000570| 20 20 20 20 20 20 20 20 | 32 20 20 20 11 31 31 36 | |2 .116|
|00000580| 0d 0b 00 20 20 20 20 20 | 20 20 11 33 78 20 20 11 |... | .3x .|
|00000590| 31 3d 20 11 34 32 32 20 | 20 20 20 20 20 20 20 20 |1= .422 | |
|000005a0| 20 11 32 12 31 44 69 76 | 69 64 65 20 62 6f 74 68 | .2.1Div|ide both|
|000005b0| 20 73 69 64 65 73 20 62 | 79 20 32 35 12 30 0d 0b | sides b|y 25.0..|
|000005c0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 32 |. | .12|
|000005d0| 35 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |5...... | |
|000005e0| 20 20 20 20 34 0d 0b 00 | 20 20 20 20 20 20 20 20 | 4...| |
|000005f0| 11 33 78 20 11 31 3d 20 | 11 34 2b 32 20 20 20 20 |.3x .1= |.4+2 |
|00000600| 20 20 20 20 20 20 11 32 | 12 31 45 78 74 72 61 63 | .2|.1Extrac|
|00000610| 74 20 73 71 75 61 72 65 | 20 72 6f 6f 74 73 12 30 |t square| roots.0|
|00000620| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000630| 11 31 35 0d 0a 00 00 17 | 4f 04 0d 0b 00 52 69 67 |.15.....|O....Rig|
|00000640| 68 74 2e 20 20 42 79 20 | 65 78 74 72 61 63 74 69 |ht. By |extracti|
|00000650| 6e 67 20 73 71 75 61 72 | 65 20 72 6f 6f 74 73 2c |ng squar|e roots,|
|00000660| 20 77 65 20 66 69 6e 64 | 20 74 68 61 74 20 74 68 | we find| that th|
|00000670| 65 20 67 69 76 65 20 65 | 71 75 61 74 69 6f 6e 20 |e give e|quation |
|00000680| 68 61 73 20 74 68 65 0d | 0a 00 73 6f 6c 75 74 69 |has the.|..soluti|
|00000690| 6f 6e 20 11 33 78 20 11 | 31 3d 20 11 34 2b 11 31 |on .3x .|1= .4+.1|
|000006a0| 34 2f 35 2e 0d 0a 00 00 | 17 4f 09 0d 0b 00 57 72 |4/5.....|.O....Wr|
|000006b0| 6f 6e 67 2e 20 20 57 65 | 20 73 6f 6c 76 65 20 74 |ong. We| solve t|
|000006c0| 68 65 20 67 69 76 65 6e | 20 65 71 75 61 74 69 6f |he given| equatio|
|000006d0| 6e 20 61 73 20 66 6f 6c | 6c 6f 77 73 2e 12 30 0d |n as fol|lows..0.|
|000006e0| 0a 00 20 20 20 20 20 20 | 20 20 11 32 32 0d 0b 00 |.. | .22...|
|000006f0| 20 20 20 20 20 11 31 32 | 35 11 33 78 20 20 11 31 | .12|5.3x .1|
|00000700| 3d 20 31 36 20 20 20 20 | 20 20 20 20 20 20 11 32 |= 16 | .2|
|00000710| 12 31 47 69 76 65 6e 20 | 65 71 75 61 74 69 6f 6e |.1Given |equation|
|00000720| 12 30 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |.0......| |
|00000730| 32 20 20 20 11 31 31 36 | 0d 0b 00 20 20 20 20 20 |2 .116|... |
|00000740| 20 20 11 33 78 20 20 11 | 31 3d 20 11 34 32 32 20 | .3x .|1= .422 |
|00000750| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 44 69 76 | | .2.1Div|
|00000760| 69 64 65 20 62 6f 74 68 | 20 73 69 64 65 73 20 62 |ide both| sides b|
|00000770| 79 20 32 35 12 30 0d 0b | 00 20 20 20 20 20 20 20 |y 25.0..|. |
|00000780| 20 20 20 20 20 11 31 32 | 35 0d 0a 00 0d 0b 00 20 | .12|5...... |
|00000790| 20 20 20 20 20 20 20 20 | 20 20 20 20 34 0d 0b 00 | | 4...|
|000007a0| 20 20 20 20 20 20 20 20 | 11 33 78 20 11 31 3d 20 | |.3x .1= |
|000007b0| 11 34 2b 32 20 20 20 20 | 20 20 20 20 20 20 11 32 |.4+2 | .2|
|000007c0| 12 31 45 78 74 72 61 63 | 74 20 73 71 75 61 72 65 |.1Extrac|t square|
|000007d0| 20 72 6f 6f 74 73 12 30 | 0d 0b 00 20 20 20 20 20 | roots.0|... |
|000007e0| 20 20 20 20 20 20 20 20 | 11 31 35 0d 0a 00 00 17 | |.15.....|
|000007f0| 4f 09 0d 0b 00 57 72 6f | 6e 67 2e 20 20 57 65 20 |O....Wro|ng. We |
|00000800| 73 6f 6c 76 65 20 74 68 | 65 20 67 69 76 65 6e 20 |solve th|e given |
|00000810| 65 71 75 61 74 69 6f 6e | 20 61 73 20 66 6f 6c 6c |equation| as foll|
|00000820| 6f 77 73 2e 12 30 0d 0a | 00 20 20 20 20 20 20 20 |ows..0..|. |
|00000830| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 11 31 32 35 | .22... | .125|
|00000840| 11 33 78 20 20 11 31 3d | 20 31 36 20 20 20 20 20 |.3x .1=| 16 |
|00000850| 20 20 20 20 20 11 32 12 | 31 47 69 76 65 6e 20 65 | .2.|1Given e|
|00000860| 71 75 61 74 69 6f 6e 12 | 30 0d 0a 00 0d 0b 00 20 |quation.|0...... |
|00000870| 20 20 20 20 20 20 20 32 | 20 20 20 11 31 31 36 0d | 2| .116.|
|00000880| 0b 00 20 20 20 20 20 20 | 20 11 33 78 20 20 11 31 |.. | .3x .1|
|00000890| 3d 20 11 34 32 32 20 20 | 20 20 20 20 20 20 20 20 |= .422 | |
|000008a0| 11 32 12 31 44 69 76 69 | 64 65 20 62 6f 74 68 20 |.2.1Divi|de both |
|000008b0| 73 69 64 65 73 20 62 79 | 20 32 35 12 30 0d 0b 00 |sides by| 25.0...|
|000008c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 31 32 35 | | .125|
|000008d0| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|000008e0| 20 20 20 34 0d 0b 00 20 | 20 20 20 20 20 20 20 11 | 4... | .|
|000008f0| 33 78 20 11 31 3d 20 11 | 34 2b 32 20 20 20 20 20 |3x .1= .|4+2 |
|00000900| 20 20 20 20 20 11 32 12 | 31 45 78 74 72 61 63 74 | .2.|1Extract|
|00000910| 20 73 71 75 61 72 65 20 | 72 6f 6f 74 73 12 30 0d | square |roots.0.|
|00000920| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |.. | .|
|00000930| 31 35 0d 0a 00 00 17 4f | 07 0d 0b 00 12 30 57 72 |15.....O|.....0Wr|
|00000940| 6f 6e 67 2e 20 20 57 65 | 20 73 6f 6c 76 65 20 74 |ong. We| solve t|
|00000950| 68 65 20 67 69 76 65 6e | 20 65 71 75 61 74 69 6f |he given| equatio|
|00000960| 6e 20 61 73 20 66 6f 6c | 6c 6f 77 73 2e 12 30 0d |n as fol|lows..0.|
|00000970| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 |.. | .2|
|00000980| 32 0d 0b 00 20 20 20 20 | 20 11 31 28 11 33 78 20 |2... | .1(.3x |
|00000990| 11 31 2d 20 33 29 20 20 | 3d 20 30 2e 32 35 20 20 |.1- 3) |= 0.25 |
|000009a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009b0| 20 20 20 20 20 20 20 20 | 11 32 12 31 47 69 76 65 | |.2.1Give|
|000009c0| 6e 20 65 71 75 61 74 69 | 6f 6e 12 30 0d 0a 00 20 |n equati|on.0... |
|000009d0| 20 20 20 20 20 20 20 11 | 33 78 20 11 31 2d 20 33 | .|3x .1- 3|
|000009e0| 20 3d 20 11 34 2b 11 31 | 30 2e 35 20 20 20 20 20 | = .4+.1|0.5 |
|000009f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a00| 20 20 20 20 20 11 32 12 | 31 45 78 74 72 61 63 74 | .2.|1Extract|
|00000a10| 20 73 71 75 61 72 65 20 | 72 6f 6f 74 73 12 30 0d | square |roots.0.|
|00000a20| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 |.. | .3|
|00000a30| 78 20 11 31 3d 20 33 20 | 2b 20 30 2e 35 20 6f 72 |x .1= 3 |+ 0.5 or|
|00000a40| 20 11 33 78 20 11 31 3d | 20 33 20 2d 20 30 2e 35 | .3x .1=| 3 - 0.5|
|00000a50| 20 20 20 20 20 20 20 20 | 11 32 12 31 53 6f 6c 76 | |.2.1Solv|
|00000a60| 65 20 66 6f 72 20 78 12 | 30 0d 0a 00 20 20 20 20 |e for x.|0... |
|00000a70| 20 20 20 20 20 20 20 20 | 11 33 78 20 11 31 3d 20 | |.3x .1= |
|00000a80| 33 2e 35 20 6f 72 20 11 | 33 78 20 11 31 3d 20 32 |3.5 or .|3x .1= 2|
|00000a90| 2e 35 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.5 | |
|00000aa0| 20 20 11 32 12 31 53 6f | 6c 75 74 69 6f 6e 73 12 | .2.1So|lutions.|
|00000ab0| 30 0d 0a 00 00 17 4f 07 | 0d 0b 00 12 30 57 72 6f |0.....O.|....0Wro|
|00000ac0| 6e 67 2e 20 20 57 65 20 | 73 6f 6c 76 65 20 74 68 |ng. We |solve th|
|00000ad0| 65 20 67 69 76 65 6e 20 | 65 71 75 61 74 69 6f 6e |e given |equation|
|00000ae0| 20 61 73 20 66 6f 6c 6c | 6f 77 73 2e 12 30 0d 0a | as foll|ows..0..|
|00000af0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 |. | .22|
|00000b00| 0d 0b 00 20 20 20 20 20 | 11 31 28 11 33 78 20 11 |... |.1(.3x .|
|00000b10| 31 2d 20 33 29 20 20 3d | 20 30 2e 32 35 20 20 20 |1- 3) =| 0.25 |
|00000b20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b30| 20 20 20 20 20 20 20 11 | 32 12 31 47 69 76 65 6e | .|2.1Given|
|00000b40| 20 65 71 75 61 74 69 6f | 6e 12 30 0d 0a 00 20 20 | equatio|n.0... |
|00000b50| 20 20 20 20 20 20 11 33 | 78 20 11 31 2d 20 33 20 | .3|x .1- 3 |
|00000b60| 3d 20 11 34 2b 11 31 30 | 2e 35 20 20 20 20 20 20 |= .4+.10|.5 |
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b80| 20 20 20 20 11 32 12 31 | 45 78 74 72 61 63 74 20 | .2.1|Extract |
|00000b90| 73 71 75 61 72 65 20 72 | 6f 6f 74 73 12 30 0d 0a |square r|oots.0..|
|00000ba0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 78 |. | .3x|
|00000bb0| 20 11 31 3d 20 33 20 2b | 20 30 2e 35 20 6f 72 20 | .1= 3 +| 0.5 or |
|00000bc0| 11 33 78 20 11 31 3d 20 | 33 20 2d 20 30 2e 35 20 |.3x .1= |3 - 0.5 |
|00000bd0| 20 20 20 20 20 20 20 11 | 32 12 31 53 6f 6c 76 65 | .|2.1Solve|
|00000be0| 20 66 6f 72 20 78 12 30 | 0d 0a 00 20 20 20 20 20 | for x.0|... |
|00000bf0| 20 20 20 20 20 20 20 11 | 33 78 20 11 31 3d 20 33 | .|3x .1= 3|
|00000c00| 2e 35 20 6f 72 20 11 33 | 78 20 11 31 3d 20 32 2e |.5 or .3|x .1= 2.|
|00000c10| 35 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |5 | |
|00000c20| 20 11 32 12 31 53 6f 6c | 75 74 69 6f 6e 73 12 30 | .2.1Sol|utions.0|
|00000c30| 0d 0a 00 00 17 4f 07 0d | 0b 00 12 30 57 72 6f 6e |.....O..|...0Wron|
|00000c40| 67 2e 20 20 57 65 20 73 | 6f 6c 76 65 20 74 68 65 |g. We s|olve the|
|00000c50| 20 67 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 20 | given e|quation |
|00000c60| 61 73 20 66 6f 6c 6c 6f | 77 73 2e 12 30 0d 0a 00 |as follo|ws..0...|
|00000c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 0d | | .22.|
|00000c80| 0b 00 20 20 20 20 20 11 | 31 28 11 33 78 20 11 31 |.. .|1(.3x .1|
|00000c90| 2d 20 33 29 20 20 3d 20 | 30 2e 32 35 20 20 20 20 |- 3) = |0.25 |
|00000ca0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000cb0| 20 20 20 20 20 20 11 32 | 12 31 47 69 76 65 6e 20 | .2|.1Given |
|00000cc0| 65 71 75 61 74 69 6f 6e | 12 30 0d 0a 00 20 20 20 |equation|.0... |
|00000cd0| 20 20 20 20 20 11 33 78 | 20 11 31 2d 20 33 20 3d | .3x| .1- 3 =|
|00000ce0| 20 11 34 2b 11 31 30 2e | 35 20 20 20 20 20 20 20 | .4+.10.|5 |
|00000cf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d00| 20 20 20 11 32 12 31 45 | 78 74 72 61 63 74 20 73 | .2.1E|xtract s|
|00000d10| 71 75 61 72 65 20 72 6f | 6f 74 73 12 30 0d 0a 00 |quare ro|ots.0...|
|00000d20| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 78 20 | | .3x |
|00000d30| 11 31 3d 20 33 20 2b 20 | 30 2e 35 20 6f 72 20 11 |.1= 3 + |0.5 or .|
|00000d40| 33 78 20 11 31 3d 20 33 | 20 2d 20 30 2e 35 20 20 |3x .1= 3| - 0.5 |
|00000d50| 20 20 20 20 20 20 11 32 | 12 31 53 6f 6c 76 65 20 | .2|.1Solve |
|00000d60| 66 6f 72 20 78 12 30 0d | 0a 00 20 20 20 20 20 20 |for x.0.|.. |
|00000d70| 20 20 20 20 20 20 11 33 | 78 20 11 31 3d 20 33 2e | .3|x .1= 3.|
|00000d80| 35 20 6f 72 20 11 33 78 | 20 11 31 3d 20 32 2e 35 |5 or .3x| .1= 2.5|
|00000d90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000da0| 11 32 12 31 53 6f 6c 75 | 74 69 6f 6e 73 12 30 0d |.2.1Solu|tions.0.|
|00000db0| 0a 00 00 17 4f 04 0d 0b | 00 52 69 67 68 74 2e 20 |....O...|.Right. |
|00000dc0| 20 54 68 65 20 67 69 76 | 65 6e 20 65 71 75 61 74 | The giv|en equat|
|00000dd0| 69 6f 6e 20 68 61 73 20 | 74 77 6f 20 73 6f 6c 75 |ion has |two solu|
|00000de0| 74 69 6f 6e 73 3a 20 32 | 2e 35 20 61 6e 64 20 33 |tions: 2|.5 and 3|
|00000df0| 2e 35 2e 20 20 54 72 79 | 20 63 68 65 63 6b 69 6e |.5. Try| checkin|
|00000e00| 67 0d 0a 00 65 61 63 68 | 20 73 6f 6c 75 74 69 6f |g...each| solutio|
|00000e10| 6e 20 69 6e 20 74 68 65 | 20 6f 72 69 67 69 6e 61 |n in the| origina|
|00000e20| 6c 20 65 71 75 61 74 69 | 6f 6e 2e 0d 0a 00 00 17 |l equati|on......|
|00000e30| 4f 0f 0d 0b 00 12 30 57 | 72 6f 6e 67 2e 20 20 57 |O.....0W|rong. W|
|00000e40| 65 20 73 6f 6c 76 65 20 | 74 68 65 20 67 69 76 65 |e solve |the give|
|00000e50| 6e 20 65 71 75 61 74 69 | 6f 6e 20 61 73 20 66 6f |n equati|on as fo|
|00000e60| 6c 6c 6f 77 73 2e 12 30 | 0d 0a 00 20 20 20 20 20 |llows..0|... |
|00000e70| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 11 33 78 20 | .22... | .3x |
|00000e80| 20 11 31 2d 20 33 11 33 | 78 20 11 31 2d 20 31 38 | .1- 3.3|x .1- 18|
|00000e90| 20 3d 20 30 20 20 20 20 | 20 20 20 20 20 20 20 20 | = 0 | |
|00000ea0| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 47 69 76 | | .2.1Giv|
|00000eb0| 65 6e 20 65 71 75 61 74 | 69 6f 6e 12 30 0d 0a 00 |en equat|ion.0...|
|00000ec0| 20 20 20 20 20 20 20 20 | 20 20 20 32 0d 0b 00 20 | | 2... |
|00000ed0| 20 20 20 20 20 20 20 20 | 20 11 33 78 20 20 11 31 | | .3x .1|
|00000ee0| 2d 20 33 11 33 78 20 11 | 31 3d 20 31 38 20 20 20 |- 3.3x .|1= 18 |
|00000ef0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f00| 20 11 32 12 31 41 64 64 | 20 31 38 20 74 6f 20 62 | .2.1Add| 18 to b|
|00000f10| 6f 74 68 20 73 69 64 65 | 73 12 30 0d 0a 00 20 20 |oth side|s.0... |
|00000f20| 20 32 20 20 20 20 20 20 | 20 20 20 20 11 31 33 20 | 2 | .13 |
|00000f30| 11 32 32 20 20 20 20 20 | 20 20 20 20 20 11 31 33 |.22 | .13|
|00000f40| 20 11 32 32 20 20 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00000f50| 12 31 20 20 20 20 20 20 | 33 20 32 20 12 30 0d 0b |.1 |3 2 .0..|
|00000f60| 00 20 20 11 33 78 20 20 | 11 31 2d 20 33 11 33 78 |. .3x |.1- 3.3x|
|00000f70| 20 11 31 2b 20 28 2d 11 | 34 32 11 31 29 20 20 3d | .1+ (-.|42.1) =|
|00000f80| 20 31 38 20 2b 20 28 2d | 11 34 32 11 31 29 20 20 | 18 + (-|.42.1) |
|00000f90| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 12 31 41 | | .2.1A|
|00000fa0| 64 64 20 28 2d 2d 29 20 | 20 74 6f 20 62 6f 74 68 |dd (--) | to both|
|00000fb0| 20 73 69 64 65 73 12 30 | 0d 0b 00 20 20 20 20 20 | sides.0|... |
|00000fc0| 20 20 20 20 20 20 20 20 | 20 11 31 32 20 20 20 20 | | .12 |
|00000fd0| 20 20 20 20 20 20 20 20 | 32 20 20 20 20 20 20 20 | |2 |
|00000fe0| 20 20 20 20 20 20 20 11 | 32 12 31 20 20 20 20 20 | .|2.1 |
|00000ff0| 20 32 20 20 20 12 30 0d | 0a 00 20 20 20 20 20 20 | 2 .0.|.. |
|00001000| 20 20 20 20 20 20 20 20 | 11 31 33 20 11 32 32 20 | |.13 .22 |
|00001010| 20 20 11 31 38 31 0d 0b | 00 20 20 20 20 20 20 20 | .181..|. |
|00001020| 20 20 28 11 33 78 20 11 | 31 2d 20 11 34 32 11 31 | (.3x .|1- .42.1|
|00001030| 29 20 20 3d 20 11 34 32 | 32 20 20 20 20 20 20 20 |) = .42|2 |
|00001040| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 12 | | .2.|
|00001050| 31 50 65 72 66 65 63 74 | 20 73 71 75 61 72 65 20 |1Perfect| square |
|00001060| 74 72 69 6e 6f 6d 69 61 | 6c 12 30 0d 0b 00 20 20 |trinomia|l.0... |
|00001070| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 31 32 20 | | .12 |
|00001080| 20 20 20 20 20 34 0d 0a | 00 20 20 20 20 20 20 20 | 4..|. |
|00001090| 20 20 20 20 20 20 20 20 | 20 33 20 20 20 20 39 0d | | 3 9.|
|000010a0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 |.. | .3|
|000010b0| 78 20 11 31 2d 20 11 34 | 32 20 11 31 3d 20 11 34 |x .1- .4|2 .1= .4|
|000010c0| 2b 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |+2 | |
|000010d0| 20 20 20 20 20 20 11 32 | 12 31 45 78 74 72 61 63 | .2|.1Extrac|
|000010e0| 74 20 73 71 75 61 72 65 | 20 72 6f 6f 74 73 12 30 |t square| roots.0|
|000010f0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001100| 20 20 20 11 31 32 20 20 | 20 20 32 0d 0a 00 20 20 | .12 | 2... |
|00001110| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001120| 20 20 33 20 20 20 39 20 | 20 20 20 33 20 20 20 39 | 3 9 | 3 9|
|00001130| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001140| 20 20 20 11 33 78 20 11 | 31 3d 20 11 34 32 20 11 | .3x .|1= .42 .|
|00001150| 31 2b 20 11 34 32 20 11 | 31 6f 72 20 11 34 32 20 |1+ .42 .|1or .42 |
|00001160| 11 31 2d 20 11 34 32 20 | 20 20 20 20 20 20 20 11 |.1- .42 | .|
|00001170| 32 12 31 53 6f 6c 76 65 | 20 66 6f 72 20 78 12 30 |2.1Solve| for x.0|
|00001180| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001190| 20 20 20 20 20 20 20 11 | 31 32 20 20 20 32 20 20 | .|12 2 |
|000011a0| 20 20 32 20 20 20 32 0d | 0a 00 20 20 20 20 20 20 | 2 2.|.. |
|000011b0| 20 20 20 20 20 20 20 20 | 20 20 11 33 78 20 11 31 | | .3x .1|
|000011c0| 3d 20 36 20 6f 72 20 2d | 33 20 20 20 20 20 20 20 |= 6 or -|3 |
|000011d0| 20 20 20 20 20 20 20 20 | 11 32 12 31 53 6f 6c 75 | |.2.1Solu|
|000011e0| 74 69 6f 6e 73 12 30 0d | 0a 00 00 17 4f 0f 0d 0b |tions.0.|....O...|
|000011f0| 00 12 30 57 72 6f 6e 67 | 2e 20 20 57 65 20 73 6f |..0Wrong|. We so|
|00001200| 6c 76 65 20 74 68 65 20 | 67 69 76 65 6e 20 65 71 |lve the |given eq|
|00001210| 75 61 74 69 6f 6e 20 61 | 73 20 66 6f 6c 6c 6f 77 |uation a|s follow|
|00001220| 73 2e 12 30 0d 0a 00 20 | 20 20 20 20 20 11 32 32 |s..0... | .22|
|00001230| 0d 0b 00 20 20 20 20 20 | 11 33 78 20 20 11 31 2d |... |.3x .1-|
|00001240| 20 33 11 33 78 20 11 31 | 2d 20 31 38 20 3d 20 30 | 3.3x .1|- 18 = 0|
|00001250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001260| 20 20 20 20 20 11 32 12 | 31 47 69 76 65 6e 20 65 | .2.|1Given e|
|00001270| 71 75 61 74 69 6f 6e 12 | 30 0d 0a 00 20 20 20 20 |quation.|0... |
|00001280| 20 20 20 20 20 20 20 32 | 0d 0b 00 20 20 20 20 20 | 2|... |
|00001290| 20 20 20 20 20 11 33 78 | 20 20 11 31 2d 20 33 11 | .3x| .1- 3.|
|000012a0| 33 78 20 11 31 3d 20 31 | 38 20 20 20 20 20 20 20 |3x .1= 1|8 |
|000012b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 12 | | .2.|
|000012c0| 31 41 64 64 20 31 38 20 | 74 6f 20 62 6f 74 68 20 |1Add 18 |to both |
|000012d0| 73 69 64 65 73 12 30 0d | 0a 00 20 20 20 32 20 20 |sides.0.|.. 2 |
|000012e0| 20 20 20 20 20 20 20 20 | 11 31 33 20 11 32 32 20 | |.13 .22 |
|000012f0| 20 20 20 20 20 20 20 20 | 20 11 31 33 20 11 32 32 | | .13 .22|
|00001300| 20 20 20 20 20 20 20 20 | 20 20 20 20 12 31 20 20 | | .1 |
|00001310| 20 20 20 20 33 20 32 20 | 12 30 0d 0b 00 20 20 11 | 3 2 |.0... .|
|00001320| 33 78 20 20 11 31 2d 20 | 33 11 33 78 20 11 31 2b |3x .1- |3.3x .1+|
|00001330| 20 28 2d 11 34 32 11 31 | 29 20 20 3d 20 31 38 20 | (-.42.1|) = 18 |
|00001340| 2b 20 28 2d 11 34 32 11 | 31 29 20 20 20 20 20 20 |+ (-.42.|1) |
|00001350| 20 20 20 20 20 20 20 11 | 32 12 31 41 64 64 20 28 | .|2.1Add (|
|00001360| 2d 2d 29 20 20 74 6f 20 | 62 6f 74 68 20 73 69 64 |--) to |both sid|
|00001370| 65 73 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |es.0... | |
|00001380| 20 20 20 20 20 11 31 32 | 20 20 20 20 20 20 20 20 | .12| |
|00001390| 20 20 20 20 32 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|000013a0| 20 20 20 11 32 12 31 20 | 20 20 20 20 20 32 20 20 | .2.1 | 2 |
|000013b0| 20 12 30 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 | .0... | |
|000013c0| 20 20 20 20 11 31 33 20 | 11 32 32 20 20 20 11 31 | .13 |.22 .1|
|000013d0| 38 31 0d 0b 00 20 20 20 | 20 20 20 20 20 20 28 11 |81... | (.|
|000013e0| 33 78 20 11 31 2d 20 11 | 34 32 11 31 29 20 20 3d |3x .1- .|42.1) =|
|000013f0| 20 11 34 32 32 20 20 20 | 20 20 20 20 20 20 20 20 | .422 | |
|00001400| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 50 65 72 | | .2.1Per|
|00001410| 66 65 63 74 20 73 71 75 | 61 72 65 20 74 72 69 6e |fect squ|are trin|
|00001420| 6f 6d 69 61 6c 12 30 0d | 0b 00 20 20 20 20 20 20 |omial.0.|.. |
|00001430| 20 20 20 20 20 20 20 20 | 11 31 32 20 20 20 20 20 | |.12 |
|00001440| 20 34 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 | 4... | |
|00001450| 20 20 20 20 20 33 20 20 | 20 20 39 0d 0b 00 20 20 | 3 | 9... |
|00001460| 20 20 20 20 20 20 20 20 | 20 20 11 33 78 20 11 31 | | .3x .1|
|00001470| 2d 20 11 34 32 20 11 31 | 3d 20 11 34 2b 32 20 20 |- .42 .1|= .4+2 |
|00001480| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001490| 20 20 11 32 12 31 45 78 | 74 72 61 63 74 20 73 71 | .2.1Ex|tract sq|
|000014a0| 75 61 72 65 20 72 6f 6f | 74 73 12 30 0d 0b 00 20 |uare roo|ts.0... |
|000014b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000014c0| 31 32 20 20 20 20 32 0d | 0a 00 20 20 20 20 20 20 |12 2.|.. |
|000014d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 33 20 | | 3 |
|000014e0| 20 20 39 20 20 20 20 33 | 20 20 20 39 0d 0b 00 20 | 9 3| 9... |
|000014f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001500| 33 78 20 11 31 3d 20 11 | 34 32 20 11 31 2b 20 11 |3x .1= .|42 .1+ .|
|00001510| 34 32 20 11 31 6f 72 20 | 11 34 32 20 11 31 2d 20 |42 .1or |.42 .1- |
|00001520| 11 34 32 20 20 20 20 20 | 20 20 20 11 32 12 31 53 |.42 | .2.1S|
|00001530| 6f 6c 76 65 20 66 6f 72 | 20 78 12 30 0d 0b 00 20 |olve for| x.0... |
|00001540| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001550| 20 20 20 11 31 32 20 20 | 20 32 20 20 20 20 32 20 | .12 | 2 2 |
|00001560| 20 20 32 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00001570| 20 20 20 20 20 20 11 33 | 78 20 11 31 3d 20 36 20 | .3|x .1= 6 |
|00001580| 6f 72 20 2d 33 20 20 20 | 20 20 20 20 20 20 20 20 |or -3 | |
|00001590| 20 20 20 20 11 32 12 31 | 53 6f 6c 75 74 69 6f 6e | .2.1|Solution|
|000015a0| 73 12 30 0d 0a 00 00 17 | 4f 0f 0d 0b 00 12 30 57 |s.0.....|O.....0W|
|000015b0| 72 6f 6e 67 2e 20 20 57 | 65 20 73 6f 6c 76 65 20 |rong. W|e solve |
|000015c0| 74 68 65 20 67 69 76 65 | 6e 20 65 71 75 61 74 69 |the give|n equati|
|000015d0| 6f 6e 20 61 73 20 66 6f | 6c 6c 6f 77 73 2e 12 30 |on as fo|llows..0|
|000015e0| 0d 0a 00 20 20 20 20 20 | 20 11 32 32 0d 0b 00 20 |... | .22... |
|000015f0| 20 20 20 20 11 33 78 20 | 20 11 31 2d 20 33 11 33 | .3x | .1- 3.3|
|00001600| 78 20 11 31 2d 20 31 38 | 20 3d 20 30 20 20 20 20 |x .1- 18| = 0 |
|00001610| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001620| 20 11 32 12 31 47 69 76 | 65 6e 20 65 71 75 61 74 | .2.1Giv|en equat|
|00001630| 69 6f 6e 12 30 0d 0a 00 | 20 20 20 20 20 20 20 20 |ion.0...| |
|00001640| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00001650| 20 11 33 78 20 20 11 31 | 2d 20 33 11 33 78 20 11 | .3x .1|- 3.3x .|
|00001660| 31 3d 20 31 38 20 20 20 | 20 20 20 20 20 20 20 20 |1= 18 | |
|00001670| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 41 64 64 | | .2.1Add|
|00001680| 20 31 38 20 74 6f 20 62 | 6f 74 68 20 73 69 64 65 | 18 to b|oth side|
|00001690| 73 12 30 0d 0a 00 20 20 | 20 32 20 20 20 20 20 20 |s.0... | 2 |
|000016a0| 20 20 20 20 11 31 33 20 | 11 32 32 20 20 20 20 20 | .13 |.22 |
|000016b0| 20 20 20 20 20 11 31 33 | 20 11 32 32 20 20 20 20 | .13| .22 |
|000016c0| 20 20 20 20 20 20 20 20 | 12 31 20 20 20 20 20 20 | |.1 |
|000016d0| 33 20 32 20 12 30 0d 0b | 00 20 20 11 33 78 20 20 |3 2 .0..|. .3x |
|000016e0| 11 31 2d 20 33 11 33 78 | 20 11 31 2b 20 28 2d 11 |.1- 3.3x| .1+ (-.|
|000016f0| 34 32 11 31 29 20 20 3d | 20 31 38 20 2b 20 28 2d |42.1) =| 18 + (-|
|00001700| 11 34 32 11 31 29 20 20 | 20 20 20 20 20 20 20 20 |.42.1) | |
|00001710| 20 20 20 11 32 12 31 41 | 64 64 20 28 2d 2d 29 20 | .2.1A|dd (--) |
|00001720| 20 74 6f 20 62 6f 74 68 | 20 73 69 64 65 73 12 30 | to both| sides.0|
|00001730| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001740| 20 11 31 32 20 20 20 20 | 20 20 20 20 20 20 20 20 | .12 | |
|00001750| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |2 | .|
|00001760| 32 12 31 20 20 20 20 20 | 20 32 20 20 20 12 30 0d |2.1 | 2 .0.|
|00001770| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001780| 11 31 33 20 11 32 32 20 | 20 20 11 31 38 31 0d 0b |.13 .22 | .181..|
|00001790| 00 20 20 20 20 20 20 20 | 20 20 28 11 33 78 20 11 |. | (.3x .|
|000017a0| 31 2d 20 11 34 32 11 31 | 29 20 20 3d 20 11 34 32 |1- .42.1|) = .42|
|000017b0| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |2 | |
|000017c0| 20 20 20 20 20 11 32 12 | 31 50 65 72 66 65 63 74 | .2.|1Perfect|
|000017d0| 20 73 71 75 61 72 65 20 | 74 72 69 6e 6f 6d 69 61 | square |trinomia|
|000017e0| 6c 12 30 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |l.0... | |
|000017f0| 20 20 20 20 11 31 32 20 | 20 20 20 20 20 34 0d 0a | .12 | 4..|
|00001800| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001810| 20 33 20 20 20 20 39 0d | 0b 00 20 20 20 20 20 20 | 3 9.|.. |
|00001820| 20 20 20 20 20 20 11 33 | 78 20 11 31 2d 20 11 34 | .3|x .1- .4|
|00001830| 32 20 11 31 3d 20 11 34 | 2b 32 20 20 20 20 20 20 |2 .1= .4|+2 |
|00001840| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00001850| 12 31 45 78 74 72 61 63 | 74 20 73 71 75 61 72 65 |.1Extrac|t square|
|00001860| 20 72 6f 6f 74 73 12 30 | 0d 0b 00 20 20 20 20 20 | roots.0|... |
|00001870| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 32 20 20 | | .12 |
|00001880| 20 20 32 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00001890| 20 20 20 20 20 20 20 20 | 20 20 33 20 20 20 39 20 | | 3 9 |
|000018a0| 20 20 20 33 20 20 20 39 | 0d 0b 00 20 20 20 20 20 | 3 9|... |
|000018b0| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 78 20 11 | | .3x .|
|000018c0| 31 3d 20 11 34 32 20 11 | 31 2b 20 11 34 32 20 11 |1= .42 .|1+ .42 .|
|000018d0| 31 6f 72 20 11 34 32 20 | 11 31 2d 20 11 34 32 20 |1or .42 |.1- .42 |
|000018e0| 20 20 20 20 20 20 20 11 | 32 12 31 53 6f 6c 76 65 | .|2.1Solve|
|000018f0| 20 66 6f 72 20 78 12 30 | 0d 0b 00 20 20 20 20 20 | for x.0|... |
|00001900| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001910| 31 32 20 20 20 32 20 20 | 20 20 32 20 20 20 32 0d |12 2 | 2 2.|
|00001920| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001930| 20 20 11 33 78 20 11 31 | 3d 20 36 20 6f 72 20 2d | .3x .1|= 6 or -|
|00001940| 33 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |3 | |
|00001950| 11 32 12 31 53 6f 6c 75 | 74 69 6f 6e 73 12 30 0d |.2.1Solu|tions.0.|
|00001960| 0a 00 00 17 4f 03 0d 0b | 00 52 69 67 68 74 2e 20 |....O...|.Right. |
|00001970| 20 54 68 65 20 67 69 76 | 65 6e 20 65 71 75 61 74 | The giv|en equat|
|00001980| 69 6f 6e 20 68 61 73 20 | 74 77 6f 20 73 6f 6c 75 |ion has |two solu|
|00001990| 74 69 6f 6e 73 3a 20 2d | 33 20 61 6e 64 20 36 2e |tions: -|3 and 6.|
|000019a0| 0d 0a 00 00 17 4f 0d 0d | 0b 00 4e 6f 2e 20 20 42 |.....O..|..No. B|
|000019b0| 65 67 69 6e 20 62 79 20 | 73 75 62 74 72 61 63 74 |egin by |subtract|
|000019c0| 69 6e 67 20 33 20 66 72 | 6f 6d 20 62 6f 74 68 20 |ing 3 fr|om both |
|000019d0| 73 69 64 65 73 20 61 6e | 64 20 64 69 76 69 64 69 |sides an|d dividi|
|000019e0| 6e 67 20 62 6f 74 68 20 | 73 69 64 65 73 20 62 79 |ng both |sides by|
|000019f0| 20 32 2e 12 30 0d 0a 00 | 20 20 20 20 20 20 20 20 | 2..0...| |
|00001a00| 11 32 32 20 20 20 20 20 | 20 20 20 20 11 31 33 0d |.22 | .13.|
|00001a10| 0b 00 20 20 20 20 20 20 | 20 11 33 78 20 20 11 31 |.. | .3x .1|
|00001a20| 2b 20 34 11 33 78 20 11 | 31 3d 20 2d 11 34 32 0d |+ 4.3x .|1= -.42.|
|00001a30| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001a40| 20 20 20 20 11 31 32 0d | 0a 00 20 20 20 11 32 32 | .12.|.. .22|
|00001a50| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 11 31 | | 2 .1|
|00001a60| 33 20 20 20 20 11 32 32 | 20 20 20 20 20 20 20 20 |3 .22| |
|00001a70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001a80| 20 20 20 12 31 20 20 20 | 20 20 32 20 12 30 0d 0b | .1 | 2 .0..|
|00001a90| 00 20 20 11 33 78 20 20 | 11 31 2b 20 34 11 33 78 |. .3x |.1+ 4.3x|
|00001aa0| 20 11 31 2b 20 32 20 20 | 3d 20 2d 11 34 32 20 11 | .1+ 2 |= -.42 .|
|00001ab0| 31 2b 20 32 20 20 20 20 | 20 20 20 20 20 20 20 20 |1+ 2 | |
|00001ac0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ad0| 11 32 12 31 41 64 64 20 | 32 20 20 74 6f 20 62 6f |.2.1Add |2 to bo|
|00001ae0| 74 68 20 73 69 64 65 73 | 12 30 0d 0b 00 20 20 20 |th sides|.0... |
|00001af0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001b00| 31 32 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |12... | |
|00001b10| 20 20 11 32 32 20 20 20 | 11 31 35 0d 0b 00 20 20 | .22 |.15... |
|00001b20| 20 20 20 20 28 11 33 78 | 20 11 31 2b 20 32 29 20 | (.3x| .1+ 2) |
|00001b30| 20 3d 20 11 34 32 20 20 | 20 20 20 20 20 20 20 20 | = .42 | |
|00001b40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b50| 20 20 20 20 20 20 20 11 | 32 12 31 50 65 72 66 65 | .|2.1Perfe|
|00001b60| 63 74 20 73 71 75 61 72 | 65 20 74 72 69 6e 6f 6d |ct squar|e trinom|
|00001b70| 69 61 6c 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |ial.0...| |
|00001b80| 20 20 20 20 20 20 20 20 | 20 11 31 32 0d 0b 00 20 | | .12... |
|00001b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ba0| 20 20 20 20 11 34 67 32 | 20 20 20 20 20 20 20 67 | .4g2| g|
|00001bb0| 32 20 20 20 20 20 20 67 | 32 20 20 20 20 20 44 32 |2 g|2 D2|
|00001bc0| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00001bd0| 20 20 20 20 20 20 20 20 | 66 20 11 31 35 20 20 20 | |f .15 |
|00001be0| 20 20 20 11 34 66 20 11 | 31 35 20 20 20 20 20 11 | .4f .|15 .|
|00001bf0| 34 66 20 11 31 32 20 20 | 20 20 11 34 53 20 11 31 |4f .12 | .4S .1|
|00001c00| 31 30 0d 0b 00 20 20 20 | 20 20 20 20 20 20 11 33 |10... | .3|
|00001c10| 78 20 11 31 2b 20 32 20 | 3d 20 11 34 2b 20 66 20 |x .1+ 2 |= .4+ f |
|00001c20| 20 32 20 11 31 3d 20 11 | 34 2b 20 66 20 20 32 20 | 2 .1= .|4+ f 2 |
|00001c30| 2a 20 20 66 20 20 32 20 | 11 31 3d 20 11 34 2b 32 |* f 2 |.1= .4+2|
|00001c40| 32 32 32 20 20 20 11 32 | 12 31 45 78 74 72 61 63 |222 .2|.1Extrac|
|00001c50| 74 20 73 71 75 61 72 65 | 20 72 6f 6f 74 73 12 30 |t square| roots.0|
|00001c60| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001c70| 20 20 20 20 20 11 34 76 | 20 20 20 11 31 32 20 20 | .4v| .12 |
|00001c80| 20 20 11 34 76 20 20 20 | 11 31 32 20 20 20 11 34 | .4v |.12 .4|
|00001c90| 76 20 20 20 11 31 32 20 | 20 20 20 20 20 32 0d 0a |v .12 | 2..|
|00001ca0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001cb0| 20 20 20 20 20 20 20 20 | 11 34 44 32 32 0d 0b 00 | |.4D22...|
|00001cc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001cd0| 20 20 20 20 20 20 53 20 | 11 31 31 30 0d 0b 00 20 | S |.110... |
|00001ce0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 78 20 | | .3x |
|00001cf0| 11 31 3d 20 2d 32 20 11 | 34 2b 20 32 32 32 32 20 |.1= -2 .|4+ 2222 |
|00001d00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d10| 20 20 20 20 20 20 20 20 | 11 32 12 31 53 6f 6c 76 | |.2.1Solv|
|00001d20| 65 20 66 6f 72 20 78 12 | 30 0d 0b 00 20 20 20 20 |e for x.|0... |
|00001d30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d40| 20 20 20 20 11 31 32 0d | 0a 00 00 17 4f 03 0d 0b | .12.|....O...|
|00001d50| 00 52 69 67 68 74 2e 20 | 20 43 68 65 63 6b 20 79 |.Right. | Check y|
|00001d60| 6f 75 72 20 61 6e 73 77 | 65 72 20 69 6e 20 74 68 |our answ|er in th|
|00001d70| 65 20 6f 72 69 67 69 6e | 61 6c 20 73 74 61 74 65 |e origin|al state|
|00001d80| 6d 65 6e 74 20 6f 66 20 | 74 68 65 20 70 72 6f 62 |ment of |the prob|
|00001d90| 6c 65 6d 2e 0d 0a 00 00 | 17 4f 0d 0d 0b 00 4e 6f |lem.....|.O....No|
|00001da0| 2e 20 20 42 65 67 69 6e | 20 62 79 20 73 75 62 74 |. Begin| by subt|
|00001db0| 72 61 63 74 69 6e 67 20 | 33 20 66 72 6f 6d 20 62 |racting |3 from b|
|00001dc0| 6f 74 68 20 73 69 64 65 | 73 20 61 6e 64 20 64 69 |oth side|s and di|
|00001dd0| 76 69 64 69 6e 67 20 62 | 6f 74 68 20 73 69 64 65 |viding b|oth side|
|00001de0| 73 20 62 79 20 32 2e 12 | 30 0d 0a 00 20 20 20 20 |s by 2..|0... |
|00001df0| 20 20 20 20 11 32 32 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00001e00| 11 31 33 0d 0b 00 20 20 | 20 20 20 20 20 11 33 78 |.13... | .3x|
|00001e10| 20 20 11 31 2b 20 34 11 | 33 78 20 11 31 3d 20 2d | .1+ 4.|3x .1= -|
|00001e20| 11 34 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |.42... | |
|00001e30| 20 20 20 20 20 20 20 20 | 11 31 32 0d 0a 00 20 20 | |.12... |
|00001e40| 20 11 32 32 20 20 20 20 | 20 20 20 20 20 32 20 20 | .22 | 2 |
|00001e50| 20 20 11 31 33 20 20 20 | 20 11 32 32 20 20 20 20 | .13 | .22 |
|00001e60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e70| 20 20 20 20 20 20 20 12 | 31 20 20 20 20 20 32 20 | .|1 2 |
|00001e80| 12 30 0d 0b 00 20 20 11 | 33 78 20 20 11 31 2b 20 |.0... .|3x .1+ |
|00001e90| 34 11 33 78 20 11 31 2b | 20 32 20 20 3d 20 2d 11 |4.3x .1+| 2 = -.|
|00001ea0| 34 32 20 11 31 2b 20 32 | 20 20 20 20 20 20 20 20 |42 .1+ 2| |
|00001eb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ec0| 20 20 20 20 11 32 12 31 | 41 64 64 20 32 20 20 74 | .2.1|Add 2 t|
|00001ed0| 6f 20 62 6f 74 68 20 73 | 69 64 65 73 12 30 0d 0b |o both s|ides.0..|
|00001ee0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001ef0| 20 20 20 11 31 32 0d 0a | 00 20 20 20 20 20 20 20 | .12..|. |
|00001f00| 20 20 20 20 20 20 11 32 | 32 20 20 20 11 31 35 0d | .2|2 .15.|
|00001f10| 0b 00 20 20 20 20 20 20 | 28 11 33 78 20 11 31 2b |.. |(.3x .1+|
|00001f20| 20 32 29 20 20 3d 20 11 | 34 32 20 20 20 20 20 20 | 2) = .|42 |
|00001f30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f40| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 12 31 50 | | .2.1P|
|00001f50| 65 72 66 65 63 74 20 73 | 71 75 61 72 65 20 74 72 |erfect s|quare tr|
|00001f60| 69 6e 6f 6d 69 61 6c 12 | 30 0d 0b 00 20 20 20 20 |inomial.|0... |
|00001f70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 32 | | .12|
|00001f80| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001f90| 20 20 20 20 20 20 20 20 | 11 34 67 32 20 20 20 20 | |.4g2 |
|00001fa0| 20 20 20 67 32 20 20 20 | 20 20 20 67 32 20 20 20 | g2 | g2 |
|00001fb0| 20 20 44 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | D22...| |
|00001fc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 66 20 11 31 | | f .1|
|00001fd0| 35 20 20 20 20 20 20 11 | 34 66 20 11 31 35 20 20 |5 .|4f .15 |
|00001fe0| 20 20 20 11 34 66 20 11 | 31 32 20 20 20 20 11 34 | .4f .|12 .4|
|00001ff0| 53 20 11 31 31 30 0d 0b | 00 20 20 20 20 20 20 20 |S .110..|. |
|00002000| 20 20 11 33 78 20 11 31 | 2b 20 32 20 3d 20 11 34 | .3x .1|+ 2 = .4|
|00002010| 2b 20 66 20 20 32 20 11 | 31 3d 20 11 34 2b 20 66 |+ f 2 .|1= .4+ f|
|00002020| 20 20 32 20 2a 20 20 66 | 20 20 32 20 11 31 3d 20 | 2 * f| 2 .1= |
|00002030| 11 34 2b 32 32 32 32 20 | 20 20 11 32 12 31 45 78 |.4+2222 | .2.1Ex|
|00002040| 74 72 61 63 74 20 73 71 | 75 61 72 65 20 72 6f 6f |tract sq|uare roo|
|00002050| 74 73 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |ts.0... | |
|00002060| 20 20 20 20 20 20 20 20 | 20 11 34 76 20 20 20 11 | | .4v .|
|00002070| 31 32 20 20 20 20 11 34 | 76 20 20 20 11 31 32 20 |12 .4|v .12 |
|00002080| 20 20 11 34 76 20 20 20 | 11 31 32 20 20 20 20 20 | .4v |.12 |
|00002090| 20 32 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 | 2... | |
|000020a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 34 44 32 | | .4D2|
|000020b0| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|000020c0| 20 20 20 20 20 20 20 20 | 20 20 53 20 11 31 31 30 | | S .110|
|000020d0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000020e0| 11 33 78 20 11 31 3d 20 | 2d 32 20 11 34 2b 20 32 |.3x .1= |-2 .4+ 2|
|000020f0| 32 32 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |222 | |
|00002100| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 12 31 | | .2.1|
|00002110| 53 6f 6c 76 65 20 66 6f | 72 20 78 12 30 0d 0b 00 |Solve fo|r x.0...|
|00002120| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002130| 20 20 20 20 20 20 20 20 | 11 31 32 0d 0a 00 00 17 | |.12.....|
|00002140| 4f 0d 0d 0b 00 4e 6f 2e | 20 20 42 65 67 69 6e 20 |O....No.| Begin |
|00002150| 62 79 20 73 75 62 74 72 | 61 63 74 69 6e 67 20 33 |by subtr|acting 3|
|00002160| 20 66 72 6f 6d 20 62 6f | 74 68 20 73 69 64 65 73 | from bo|th sides|
|00002170| 20 61 6e 64 20 64 69 76 | 69 64 69 6e 67 20 62 6f | and div|iding bo|
|00002180| 74 68 20 73 69 64 65 73 | 20 62 79 20 32 2e 12 30 |th sides| by 2..0|
|00002190| 0d 0a 00 20 20 20 20 20 | 20 20 20 11 32 32 20 20 |... | .22 |
|000021a0| 20 20 20 20 20 20 20 11 | 31 33 0d 0b 00 20 20 20 | .|13... |
|000021b0| 20 20 20 20 11 33 78 20 | 20 11 31 2b 20 34 11 33 | .3x | .1+ 4.3|
|000021c0| 78 20 11 31 3d 20 2d 11 | 34 32 0d 0b 00 20 20 20 |x .1= -.|42... |
|000021d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000021e0| 31 32 0d 0a 00 20 20 20 | 11 32 32 20 20 20 20 20 |12... |.22 |
|000021f0| 20 20 20 20 32 20 20 20 | 20 11 31 33 20 20 20 20 | 2 | .13 |
|00002200| 11 32 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.22 | |
|00002210| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 12 31 | | .1|
|00002220| 20 20 20 20 20 32 20 12 | 30 0d 0b 00 20 20 11 33 | 2 .|0... .3|
|00002230| 78 20 20 11 31 2b 20 34 | 11 33 78 20 11 31 2b 20 |x .1+ 4|.3x .1+ |
|00002240| 32 20 20 3d 20 2d 11 34 | 32 20 11 31 2b 20 32 20 |2 = -.4|2 .1+ 2 |
|00002250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002260| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 12 31 41 | | .2.1A|
|00002270| 64 64 20 32 20 20 74 6f | 20 62 6f 74 68 20 73 69 |dd 2 to| both si|
|00002280| 64 65 73 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |des.0...| |
|00002290| 20 20 20 20 20 20 20 20 | 20 20 11 31 32 0d 0a 00 | | .12...|
|000022a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 | | .22|
|000022b0| 20 20 20 11 31 35 0d 0b | 00 20 20 20 20 20 20 28 | .15..|. (|
|000022c0| 11 33 78 20 11 31 2b 20 | 32 29 20 20 3d 20 11 34 |.3x .1+ |2) = .4|
|000022d0| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |2 | |
|000022e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000022f0| 20 20 11 32 12 31 50 65 | 72 66 65 63 74 20 73 71 | .2.1Pe|rfect sq|
|00002300| 75 61 72 65 20 74 72 69 | 6e 6f 6d 69 61 6c 12 30 |uare tri|nomial.0|
|00002310| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00002320| 20 20 20 20 11 31 32 0d | 0b 00 20 20 20 20 20 20 | .12.|.. |
|00002330| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00002340| 34 67 32 20 20 20 20 20 | 20 20 67 32 20 20 20 20 |4g2 | g2 |
|00002350| 20 20 67 32 20 20 20 20 | 20 44 32 32 0d 0b 00 20 | g2 | D22... |
|00002360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002370| 20 20 20 66 20 11 31 35 | 20 20 20 20 20 20 11 34 | f .15| .4|
|00002380| 66 20 11 31 35 20 20 20 | 20 20 11 34 66 20 11 31 |f .15 | .4f .1|
|00002390| 32 20 20 20 20 11 34 53 | 20 11 31 31 30 0d 0b 00 |2 .4S| .110...|
|000023a0| 20 20 20 20 20 20 20 20 | 20 11 33 78 20 11 31 2b | | .3x .1+|
|000023b0| 20 32 20 3d 20 11 34 2b | 20 66 20 20 32 20 11 31 | 2 = .4+| f 2 .1|
|000023c0| 3d 20 11 34 2b 20 66 20 | 20 32 20 2a 20 20 66 20 |= .4+ f | 2 * f |
|000023d0| 20 32 20 11 31 3d 20 11 | 34 2b 32 32 32 32 20 20 | 2 .1= .|4+2222 |
|000023e0| 20 11 32 12 31 45 78 74 | 72 61 63 74 20 73 71 75 | .2.1Ext|ract squ|
|000023f0| 61 72 65 20 72 6f 6f 74 | 73 12 30 0d 0b 00 20 20 |are root|s.0... |
|00002400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002410| 11 34 76 20 20 20 11 31 | 32 20 20 20 20 11 34 76 |.4v .1|2 .4v|
|00002420| 20 20 20 11 31 32 20 20 | 20 11 34 76 20 20 20 11 | .12 | .4v .|
|00002430| 31 32 20 20 20 20 20 20 | 32 0d 0a 00 20 20 20 20 |12 |2... |
|00002440| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002450| 20 20 20 11 34 44 32 32 | 0d 0b 00 20 20 20 20 20 | .4D22|... |
|00002460| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002470| 20 53 20 11 31 31 30 0d | 0b 00 20 20 20 20 20 20 | S .110.|.. |
|00002480| 20 20 20 20 20 20 20 11 | 33 78 20 11 31 3d 20 2d | .|3x .1= -|
|00002490| 32 20 11 34 2b 20 32 32 | 32 32 20 20 20 20 20 20 |2 .4+ 22|22 |
|000024a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024b0| 20 20 20 11 32 12 31 53 | 6f 6c 76 65 20 66 6f 72 | .2.1S|olve for|
|000024c0| 20 78 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | x.0... | |
|000024d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000024e0| 31 32 0d 0a 00 00 17 4f | 08 20 20 20 20 20 20 20 |12.....O|. |
|000024f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002500| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002510| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002520| 11 32 32 0d 0b 00 11 31 | 57 72 6f 6e 67 2e 20 20 |.22....1|Wrong. |
|00002530| 54 68 65 20 73 74 61 6e | 64 61 72 64 20 66 6f 72 |The stan|dard for|
|00002540| 6d 20 6f 66 20 61 20 71 | 75 61 64 72 61 74 69 63 |m of a q|uadratic|
|00002550| 20 65 71 75 61 74 69 6f | 6e 20 69 73 20 11 33 61 | equatio|n is .3a|
|00002560| 78 20 20 11 31 2b 20 11 | 33 62 78 20 11 31 2b 20 |x .1+ .|3bx .1+ |
|00002570| 11 33 63 20 11 31 3d 20 | 30 2e 0d 0a 00 54 68 75 |.3c .1= |0....Thu|
|00002580| 73 2c 20 77 65 20 70 75 | 74 20 11 33 78 11 31 28 |s, we pu|t .3x.1(|
|00002590| 31 30 20 2d 20 11 33 78 | 11 31 29 20 3d 20 35 20 |10 - .3x|.1) = 5 |
|000025a0| 69 6e 20 73 74 61 6e 64 | 61 72 64 20 66 6f 72 6d |in stand|ard form|
|000025b0| 20 61 73 20 66 6f 6c 6c | 6f 77 73 2e 12 30 0d 0a | as foll|ows..0..|
|000025c0| 00 0d 0b 00 20 20 20 20 | 20 20 11 33 78 11 31 28 |.... | .3x.1(|
|000025d0| 31 30 20 2d 20 11 33 78 | 11 31 29 20 3d 20 35 20 |10 - .3x|.1) = 5 |
|000025e0| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 47 69 76 | | .2.1Giv|
|000025f0| 65 6e 20 65 71 75 61 74 | 69 6f 6e 12 30 0d 0a 00 |en equat|ion.0...|
|00002600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 0d | | 2.|
|00002610| 0b 00 20 20 20 20 20 20 | 20 11 31 31 30 11 33 78 |.. | .110.3x|
|00002620| 20 11 31 2d 20 11 33 78 | 20 20 11 31 3d 20 35 20 | .1- .3x| .1= 5 |
|00002630| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 52 65 6d | | .2.1Rem|
|00002640| 6f 76 65 20 70 61 72 65 | 6e 74 68 65 73 65 73 12 |ove pare|ntheses.|
|00002650| 30 0d 0a 00 20 20 20 20 | 32 0d 0b 00 20 20 11 31 |0... |2... .1|
|00002660| 2d 11 33 78 20 20 11 31 | 2b 20 31 30 11 33 78 20 |-.3x .1|+ 10.3x |
|00002670| 11 31 2d 20 35 20 3d 20 | 30 20 20 20 20 20 20 20 |.1- 5 = |0 |
|00002680| 20 20 20 11 32 12 31 53 | 74 61 6e 64 61 72 64 20 | .2.1S|tandard |
|00002690| 66 6f 72 6d 12 30 0d 0a | 00 00 17 4f 08 20 20 20 |form.0..|...O. |
|000026a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026d0| 20 20 20 20 11 32 32 0d | 0b 00 11 31 57 72 6f 6e | .22.|...1Wron|
|000026e0| 67 2e 20 20 54 68 65 20 | 73 74 61 6e 64 61 72 64 |g. The |standard|
|000026f0| 20 66 6f 72 6d 20 6f 66 | 20 61 20 71 75 61 64 72 | form of| a quadr|
|00002700| 61 74 69 63 20 65 71 75 | 61 74 69 6f 6e 20 69 73 |atic equ|ation is|
|00002710| 20 11 33 61 78 20 20 11 | 31 2b 20 11 33 62 78 20 | .3ax .|1+ .3bx |
|00002720| 11 31 2b 20 11 33 63 20 | 11 31 3d 20 30 2e 0d 0a |.1+ .3c |.1= 0...|
|00002730| 00 54 68 75 73 2c 20 77 | 65 20 70 75 74 20 11 33 |.Thus, w|e put .3|
|00002740| 78 11 31 28 31 30 20 2d | 20 11 33 78 11 31 29 20 |x.1(10 -| .3x.1) |
|00002750| 3d 20 35 20 69 6e 20 73 | 74 61 6e 64 61 72 64 20 |= 5 in s|tandard |
|00002760| 66 6f 72 6d 20 61 73 20 | 66 6f 6c 6c 6f 77 73 2e |form as |follows.|
|00002770| 20 20 20 12 30 0d 0a 00 | 0d 0b 00 20 20 20 20 20 | .0...|... |
|00002780| 20 11 33 78 11 31 28 31 | 30 20 2d 20 11 33 78 11 | .3x.1(1|0 - .3x.|
|00002790| 31 29 20 3d 20 35 20 20 | 20 20 20 20 20 20 20 20 |1) = 5 | |
|000027a0| 11 32 12 31 47 69 76 65 | 6e 20 65 71 75 61 74 69 |.2.1Give|n equati|
|000027b0| 6f 6e 12 30 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |on.0... | |
|000027c0| 20 20 20 20 20 32 0d 0b | 00 20 20 20 20 20 20 20 | 2..|. |
|000027d0| 11 31 31 30 11 33 78 20 | 11 31 2d 20 11 33 78 20 |.110.3x |.1- .3x |
|000027e0| 20 11 31 3d 20 35 20 20 | 20 20 20 20 20 20 20 20 | .1= 5 | |
|000027f0| 11 32 12 31 52 65 6d 6f | 76 65 20 70 61 72 65 6e |.2.1Remo|ve paren|
|00002800| 74 68 65 73 65 73 12 30 | 0d 0a 00 20 20 20 20 32 |theses.0|... 2|
|00002810| 0d 0b 00 20 20 11 31 2d | 11 33 78 20 20 11 31 2b |... .1-|.3x .1+|
|00002820| 20 31 30 11 33 78 20 11 | 31 2d 20 35 20 3d 20 30 | 10.3x .|1- 5 = 0|
|00002830| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 53 74 | | .2.1St|
|00002840| 61 6e 64 61 72 64 20 66 | 6f 72 6d 12 30 0d 0a 00 |andard f|orm.0...|
|00002850| 00 17 4f 04 0d 0b 00 52 | 69 67 68 74 2e 20 20 4e |..O....R|ight. N|
|00002860| 6f 74 65 20 74 68 61 74 | 20 77 65 20 63 6f 75 6c |ote that| we coul|
|00002870| 64 20 61 6c 73 6f 20 77 | 72 69 74 65 20 11 33 78 |d also w|rite .3x|
|00002880| 11 31 28 31 30 20 2d 11 | 33 78 11 31 29 20 3d 20 |.1(10 -.|3x.1) = |
|00002890| 35 20 69 6e 20 73 74 61 | 6e 64 61 72 64 20 66 6f |5 in sta|ndard fo|
|000028a0| 72 6d 20 61 73 0d 0a 00 | 20 11 32 32 0d 0b 00 11 |rm as...| .22....|
|000028b0| 33 78 20 20 11 31 2d 20 | 31 30 11 33 78 20 11 31 |3x .1- |10.3x .1|
|000028c0| 2b 20 35 20 3d 20 30 2e | 0d 0a 00 00 17 4f 03 0d |+ 5 = 0.|.....O..|
|000028d0| 0b 00 41 6c 6d 6f 73 74 | 2e 20 20 43 68 65 63 6b |..Almost|. Check|
|000028e0| 20 79 6f 75 72 20 77 6f | 72 6b 2e 0d 0a 00 00 17 | your wo|rk......|
|000028f0| 4f 07 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |O. | |
|00002900| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002910| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00002920| 32 0d 0b 00 11 31 57 72 | 6f 6e 67 2e 20 20 54 68 |2....1Wr|ong. Th|
|00002930| 65 20 65 71 75 61 74 69 | 6f 6e 20 69 6e 20 73 74 |e equati|on in st|
|00002940| 61 6e 64 61 72 64 20 66 | 6f 72 6d 20 69 73 20 31 |andard f|orm is 1|
|00002950| 38 11 33 78 20 20 11 31 | 2d 20 32 34 11 33 78 20 |8.3x .1|- 24.3x |
|00002960| 11 31 2b 20 38 20 3d 20 | 30 2e 20 20 57 69 74 68 |.1+ 8 = |0. With|
|00002970| 20 11 33 61 20 11 31 3d | 20 31 38 2c 20 0d 0a 00 | .3a .1=| 18, ...|
|00002980| 11 33 62 20 11 31 3d 20 | 2d 32 34 2c 20 61 6e 64 |.3b .1= |-24, and|
|00002990| 20 11 33 63 20 11 31 3d | 20 38 2c 20 77 65 20 73 | .3c .1=| 8, we s|
|000029a0| 6f 6c 76 65 20 61 73 20 | 66 6f 6c 6c 6f 77 73 2e |olve as |follows.|
|000029b0| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|000029c0| 20 20 20 20 20 20 20 20 | 20 11 34 67 32 32 32 32 | | .4g2222|
|000029d0| 32 32 32 32 32 32 32 32 | 32 32 32 32 0d 0b 00 20 |22222222|2222... |
|000029e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000029f0| 20 20 66 20 20 20 20 20 | 11 32 32 0d 0b 00 20 20 | f |.22... |
|00002a00| 20 20 20 20 20 20 20 11 | 31 2d 28 2d 32 34 29 20 | .|1-(-24) |
|00002a10| 11 34 2b 20 76 20 11 31 | 28 2d 32 34 29 20 20 2d |.4+ v .1|(-24) -|
|00002a20| 20 34 28 31 38 29 28 38 | 29 20 20 20 32 34 20 11 | 4(18)(8|) 24 .|
|00002a30| 34 2b 20 11 31 30 20 20 | 20 32 34 20 20 20 32 0d |4+ .10 | 24 2.|
|00002a40| 0b 00 20 20 20 20 20 11 | 33 78 20 11 31 3d 20 11 |.. .|3x .1= .|
|00002a50| 34 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |42222222|22222222|
|00002a60| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 20 11 31 |22222222|22222 .1|
|00002a70| 3d 20 11 34 32 32 32 32 | 32 32 20 11 31 3d 20 11 |= .42222|22 .1= .|
|00002a80| 34 32 32 20 11 31 3d 20 | 11 34 32 0d 0b 00 20 20 |422 .1= |.42... |
|00002a90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002aa0| 20 20 11 31 32 28 31 38 | 29 20 20 20 20 20 20 20 | .12(18|) |
|00002ab0| 20 20 20 20 20 20 20 20 | 20 20 33 36 20 20 20 20 | | 36 |
|00002ac0| 20 33 36 20 20 20 33 0d | 0a 00 00 17 4f 07 20 20 | 36 3.|....O. |
|00002ad0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002ae0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002af0| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 0d 0b 00 | | .22...|
|00002b00| 11 31 57 72 6f 6e 67 2e | 20 20 54 68 65 20 65 71 |.1Wrong.| The eq|
|00002b10| 75 61 74 69 6f 6e 20 69 | 6e 20 73 74 61 6e 64 61 |uation i|n standa|
|00002b20| 72 64 20 66 6f 72 6d 20 | 69 73 20 31 38 11 33 78 |rd form |is 18.3x|
|00002b30| 20 20 11 31 2d 20 32 34 | 11 33 78 20 11 31 2b 20 | .1- 24|.3x .1+ |
|00002b40| 38 20 3d 20 30 2e 20 20 | 57 69 74 68 20 11 33 61 |8 = 0. |With .3a|
|00002b50| 20 11 31 3d 20 31 38 2c | 20 0d 0a 00 11 33 62 20 | .1= 18,| ....3b |
|00002b60| 11 31 3d 20 2d 32 34 2c | 20 61 6e 64 20 11 33 63 |.1= -24,| and .3c|
|00002b70| 20 11 31 3d 20 38 2c 20 | 77 65 20 73 6f 6c 76 65 | .1= 8, |we solve|
|00002b80| 20 61 73 20 66 6f 6c 6c | 6f 77 73 2e 12 30 0d 0a | as foll|ows..0..|
|00002b90| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00002ba0| 20 20 20 20 20 11 34 67 | 32 32 32 32 32 32 32 32 | .4g|22222222|
|00002bb0| 32 32 32 32 32 32 32 32 | 0d 0b 00 20 20 20 20 20 |22222222|... |
|00002bc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 66 20 | | f |
|00002bd0| 20 20 20 20 11 32 32 0d | 0b 00 20 20 20 20 20 20 | .22.|.. |
|00002be0| 20 20 20 11 31 2d 28 2d | 32 34 29 20 11 34 2b 20 | .1-(-|24) .4+ |
|00002bf0| 76 20 11 31 28 2d 32 34 | 29 20 20 2d 20 34 28 31 |v .1(-24|) - 4(1|
|00002c00| 38 29 28 38 29 20 20 20 | 32 34 20 11 34 2b 20 11 |8)(8) |24 .4+ .|
|00002c10| 31 30 20 20 20 32 34 20 | 20 20 32 0d 0b 00 20 20 |10 24 | 2... |
|00002c20| 20 20 20 11 33 78 20 11 | 31 3d 20 11 34 32 32 32 | .3x .|1= .4222|
|00002c30| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002c40| 32 32 32 32 32 32 32 32 | 32 20 11 31 3d 20 11 34 |22222222|2 .1= .4|
|00002c50| 32 32 32 32 32 32 20 11 | 31 3d 20 11 34 32 32 20 |222222 .|1= .422 |
|00002c60| 11 31 3d 20 11 34 32 0d | 0b 00 20 20 20 20 20 20 |.1= .42.|.. |
|00002c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|00002c80| 32 28 31 38 29 20 20 20 | 20 20 20 20 20 20 20 20 |2(18) | |
|00002c90| 20 20 20 20 20 20 33 36 | 20 20 20 20 20 33 36 20 | 36| 36 |
|00002ca0| 20 20 33 0d 0a 00 00 17 | 4f 03 0d 0b 00 52 69 67 | 3.....|O....Rig|
|00002cb0| 68 74 2e 20 20 54 68 65 | 20 65 71 75 61 74 69 6f |ht. The| equatio|
|00002cc0| 6e 20 68 61 73 20 6f 6e | 65 20 73 6f 6c 75 74 69 |n has on|e soluti|
|00002cd0| 6f 6e 3a 20 32 2f 33 2e | 0d 0a 00 00 17 4f 03 0d |on: 2/3.|.....O..|
|00002ce0| 0b 00 57 72 6f 6e 67 2e | 20 20 54 68 65 20 67 69 |..Wrong.| The gi|
|00002cf0| 76 65 6e 20 65 71 75 61 | 74 69 6f 6e 20 68 61 73 |ven equa|tion has|
|00002d00| 20 61 20 73 6f 6c 75 74 | 69 6f 6e 2e 20 20 54 72 | a solut|ion. Tr|
|00002d10| 79 20 61 67 61 69 6e 2e | 0d 0a 00 00 17 4f 04 0d |y again.|.....O..|
|00002d20| 0b 00 57 72 6f 6e 67 2e | 20 20 43 68 65 63 6b 20 |..Wrong.| Check |
|00002d30| 79 6f 75 72 20 63 61 6c | 63 75 6c 61 74 69 6f 6e |your cal|culation|
|00002d40| 73 20 6f 72 20 72 65 76 | 69 65 77 20 47 75 69 64 |s or rev|iew Guid|
|00002d50| 65 64 20 45 78 61 6d 70 | 6c 65 20 31 32 20 69 66 |ed Examp|le 12 if|
|00002d60| 20 79 6f 75 20 6e 65 65 | 64 20 0d 0a 00 6d 6f 72 | you nee|d ...mor|
|00002d70| 65 20 68 65 6c 70 2e 0d | 0a 00 00 17 4f 04 0d 0b |e help..|....O...|
|00002d80| 00 57 72 6f 6e 67 2e 20 | 20 43 68 65 63 6b 20 79 |.Wrong. | Check y|
|00002d90| 6f 75 72 20 63 61 6c 63 | 75 6c 61 74 69 6f 6e 73 |our calc|ulations|
|00002da0| 20 6f 72 20 72 65 76 69 | 65 77 20 47 75 69 64 65 | or revi|ew Guide|
|00002db0| 64 20 45 78 61 6d 70 6c | 65 20 31 32 20 69 66 20 |d Exampl|e 12 if |
|00002dc0| 79 6f 75 20 6e 65 65 64 | 20 0d 0a 00 6d 6f 72 65 |you need| ...more|
|00002dd0| 20 68 65 6c 70 2e 0d 0a | 00 00 17 4f 03 0d 0b 00 | help...|...O....|
|00002de0| 52 69 67 68 74 2e 20 20 | 59 6f 75 20 73 6f 6c 76 |Right. |You solv|
|00002df0| 65 64 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 20 |ed the e|quation |
|00002e00| 75 73 69 6e 67 20 79 6f | 75 72 20 63 61 6c 63 75 |using yo|ur calcu|
|00002e10| 6c 61 74 6f 72 20 63 6f | 72 72 65 63 74 6c 79 2e |lator co|rrectly.|
|00002e20| 0d 0a 00 00 17 4f 04 0d | 0b 00 57 72 6f 6e 67 2e |.....O..|..Wrong.|
|00002e30| 20 20 43 68 65 63 6b 20 | 79 6f 75 72 20 63 61 6c | Check |your cal|
|00002e40| 63 75 6c 61 74 69 6f 6e | 73 20 6f 72 20 72 65 76 |culation|s or rev|
|00002e50| 69 65 77 20 47 75 69 64 | 65 64 20 45 78 61 6d 70 |iew Guid|ed Examp|
|00002e60| 6c 65 20 31 32 20 69 66 | 20 79 6f 75 20 6e 65 65 |le 12 if| you nee|
|00002e70| 64 20 0d 0a 00 6d 6f 72 | 65 20 68 65 6c 70 2e 0d |d ...mor|e help..|
|00002e80| 0a 00 00 17 4f 03 0d 0b | 00 4e 6f 2e 20 20 11 33 |....O...|.No. .3|
|00002e90| 78 20 11 31 3d 20 34 20 | 69 73 20 61 20 73 6f 6c |x .1= 4 |is a sol|
|00002ea0| 75 74 69 6f 6e 20 74 6f | 20 74 68 69 73 20 65 71 |ution to| this eq|
|00002eb0| 75 61 74 69 6f 6e 2c 20 | 62 75 74 20 11 33 78 20 |uation, |but .3x |
|00002ec0| 11 31 3d 20 2d 32 2f 33 | 20 69 73 20 61 6c 73 6f |.1= -2/3| is also|
|00002ed0| 20 61 20 73 6f 6c 75 74 | 69 6f 6e 2e 0d 0a 00 00 | a solut|ion.....|
|00002ee0| 17 4f 03 0d 0b 00 47 6f | 6f 64 20 6a 6f 62 2e 20 |.O....Go|od job. |
|00002ef0| 20 54 68 65 20 67 69 76 | 65 6e 20 65 71 75 61 74 | The giv|en equat|
|00002f00| 69 6f 6e 20 68 61 73 20 | 74 77 6f 20 73 6f 6c 75 |ion has |two solu|
|00002f10| 74 69 6f 6e 73 3a 20 34 | 20 61 6e 64 20 2d 32 2f |tions: 4| and -2/|
|00002f20| 33 2e 0d 0a 00 00 17 4f | 07 0d 0b 00 57 72 6f 6e |3......O|....Wron|
|00002f30| 67 2e 20 20 57 65 20 73 | 6f 6c 76 65 20 74 68 65 |g. We s|olve the|
|00002f40| 20 65 71 75 61 74 69 6f | 6e 20 61 73 20 66 6f 6c | equatio|n as fol|
|00002f50| 6c 6f 77 73 2e 20 20 12 | 30 0d 0a 00 20 20 20 20 |lows. .|0... |
|00002f60| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 0d | | .22.|
|00002f70| 0b 00 20 20 20 20 11 31 | 38 20 2b 20 31 30 11 33 |.. .1|8 + 10.3|
|00002f80| 78 20 11 31 2d 20 33 11 | 33 78 20 20 11 31 3d 20 |x .1- 3.|3x .1= |
|00002f90| 30 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |0 | |
|00002fa0| 20 20 20 20 20 20 20 11 | 32 12 31 47 69 76 65 6e | .|2.1Given|
|00002fb0| 20 65 71 75 61 74 69 6f | 6e 12 30 0d 0a 00 20 20 | equatio|n.0... |
|00002fc0| 11 31 28 34 20 2d 20 11 | 33 78 11 31 29 28 32 20 |.1(4 - .|3x.1)(2 |
|00002fd0| 2b 20 33 11 33 78 11 31 | 29 20 3d 20 30 20 20 20 |+ 3.3x.1|) = 0 |
|00002fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002ff0| 20 20 20 11 32 12 31 46 | 61 63 74 6f 72 65 64 20 | .2.1F|actored |
|00003000| 66 6f 72 6d 12 30 0d 0a | 00 20 20 20 20 20 20 20 |form.0..|. |
|00003010| 20 20 20 20 20 11 31 34 | 20 2d 20 11 33 78 20 11 | .14| - .3x .|
|00003020| 31 3d 20 30 20 20 20 11 | 34 35 35 36 20 20 20 11 |1= 0 .|4556 .|
|00003030| 33 78 20 11 31 3d 20 34 | 20 20 20 20 20 20 20 20 |3x .1= 4| |
|00003040| 11 32 12 31 53 65 74 20 | 31 73 74 20 66 61 63 74 |.2.1Set |1st fact|
|00003050| 6f 72 20 65 71 75 61 6c | 20 74 6f 20 30 12 30 0d |or equal| to 0.0.|
|00003060| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 11 31 32 |.. | .12|
|00003070| 20 2b 20 33 11 33 78 20 | 11 31 3d 20 30 20 20 20 | + 3.3x |.1= 0 |
|00003080| 11 34 35 35 36 20 20 20 | 11 33 78 20 11 31 3d 20 |.4556 |.3x .1= |
|00003090| 2d 32 2f 33 20 20 20 20 | 20 11 32 12 31 53 65 74 |-2/3 | .2.1Set|
|000030a0| 20 32 6e 64 20 66 61 63 | 74 6f 72 20 65 71 75 61 | 2nd fac|tor equa|
|000030b0| 6c 20 74 6f 20 30 12 33 | 0d 0a 00 00 17 4f 03 0d |l to 0.3|.....O..|
|000030c0| 0b 00 4e 6f 2e 20 20 11 | 33 78 20 11 31 3d 20 2d |..No. .|3x .1= -|
|000030d0| 32 2f 33 20 69 73 20 61 | 20 73 6f 6c 75 74 69 6f |2/3 is a| solutio|
|000030e0| 6e 20 74 6f 20 74 68 69 | 73 20 65 71 75 61 74 69 |n to thi|s equati|
|000030f0| 6f 6e 2c 20 62 75 74 20 | 11 33 78 20 11 31 3d 20 |on, but |.3x .1= |
|00003100| 34 20 69 73 20 61 6c 73 | 6f 20 61 20 73 6f 6c 75 |4 is als|o a solu|
|00003110| 74 69 6f 6e 2e 0d 0a 00 | 00 17 4f 03 0d 0b 00 52 |tion....|..O....R|
|00003120| 69 67 68 74 2e 20 20 54 | 68 65 20 67 69 76 65 6e |ight. T|he given|
|00003130| 20 65 71 75 61 74 69 6f | 6e 20 68 61 73 20 74 77 | equatio|n has tw|
|00003140| 6f 20 73 6f 6c 75 74 69 | 6f 6e 73 3a 20 35 2f 33 |o soluti|ons: 5/3|
|00003150| 20 61 6e 64 20 2d 35 2f | 33 2e 0d 0a 00 00 17 4f | and -5/|3......O|
|00003160| 0b 0d 0b 00 57 72 6f 6e | 67 2e 20 20 57 65 20 73 |....Wron|g. We s|
|00003170| 6f 6c 76 65 20 74 68 65 | 20 67 69 76 65 6e 20 65 |olve the| given e|
|00003180| 71 75 61 74 69 6f 6e 20 | 61 73 20 66 6f 6c 6c 6f |quation |as follo|
|00003190| 77 73 2e 20 20 28 4e 6f | 74 65 20 74 68 61 74 20 |ws. (No|te that |
|000031a0| 77 65 20 63 6f 75 6c 64 | 20 68 61 76 65 20 0d 0a |we could| have ..|
|000031b0| 00 63 68 6f 73 65 6e 20 | 61 6e 6f 74 68 65 72 20 |.chosen |another |
|000031c0| 6d 65 74 68 6f 64 20 74 | 6f 20 73 6f 6c 76 65 20 |method t|o solve |
|000031d0| 74 68 69 73 20 65 71 75 | 61 74 69 6f 6e 2c 20 73 |this equ|ation, s|
|000031e0| 75 63 68 20 61 73 20 62 | 79 20 66 61 63 74 6f 72 |uch as b|y factor|
|000031f0| 69 6e 67 2e 29 12 30 0d | 0a 00 20 20 20 20 20 20 |ing.).0.|.. |
|00003200| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 11 31 39 11 | .22... | .19.|
|00003210| 33 78 20 20 11 31 2d 20 | 32 35 20 3d 20 30 20 20 |3x .1- |25 = 0 |
|00003220| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 47 69 76 | | .2.1Giv|
|00003230| 65 6e 20 65 71 75 61 74 | 69 6f 6e 12 30 0d 0a 00 |en equat|ion.0...|
|00003240| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 0d 0b 00 | | 2...|
|00003250| 20 20 20 20 20 20 20 20 | 20 20 11 31 39 11 33 78 | | .19.3x|
|00003260| 20 20 11 31 3d 20 32 35 | 20 20 20 20 20 20 20 20 | .1= 25| |
|00003270| 20 20 11 32 12 31 41 64 | 64 20 32 35 20 74 6f 20 | .2.1Ad|d 25 to |
|00003280| 62 6f 74 68 20 73 69 64 | 65 73 12 30 0d 0a 00 20 |both sid|es.0... |
|00003290| 20 20 20 20 20 20 20 20 | 20 20 20 32 20 20 20 11 | | 2 .|
|000032a0| 31 32 35 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |125... | |
|000032b0| 20 11 33 78 20 20 11 31 | 3d 20 11 34 32 32 20 20 | .3x .1|= .422 |
|000032c0| 20 20 20 20 20 20 20 20 | 11 32 12 31 44 69 76 69 | |.2.1Divi|
|000032d0| 64 65 20 62 79 20 39 12 | 30 0d 0b 00 20 20 20 20 |de by 9.|0... |
|000032e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 39 | | .19|
|000032f0| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00003300| 20 20 20 20 35 0d 0b 00 | 20 20 20 20 20 20 20 20 | 5...| |
|00003310| 20 20 20 20 11 33 78 20 | 11 31 3d 20 11 34 2b 32 | .3x |.1= .4+2|
|00003320| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 45 78 | | .2.1Ex|
|00003330| 74 72 61 63 74 20 73 71 | 75 61 72 65 20 72 6f 6f |tract sq|uare roo|
|00003340| 74 73 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |ts.0... | |
|00003350| 20 20 20 20 20 20 20 20 | 11 31 33 0d 0a 00 00 17 | |.13.....|
|00003360| 4f 0b 0d 0b 00 57 72 6f | 6e 67 2e 20 20 57 65 20 |O....Wro|ng. We |
|00003370| 73 6f 6c 76 65 20 74 68 | 65 20 67 69 76 65 6e 20 |solve th|e given |
|00003380| 65 71 75 61 74 69 6f 6e | 20 61 73 20 66 6f 6c 6c |equation| as foll|
|00003390| 6f 77 73 2e 20 20 28 4e | 6f 74 65 20 74 68 61 74 |ows. (N|ote that|
|000033a0| 20 77 65 20 63 6f 75 6c | 64 20 68 61 76 65 20 0d | we coul|d have .|
|000033b0| 0a 00 63 68 6f 73 65 6e | 20 61 6e 6f 74 68 65 72 |..chosen| another|
|000033c0| 20 6d 65 74 68 6f 64 20 | 74 6f 20 73 6f 6c 76 65 | method |to solve|
|000033d0| 20 74 68 69 73 20 65 71 | 75 61 74 69 6f 6e 2c 20 | this eq|uation, |
|000033e0| 73 75 63 68 20 61 73 20 | 62 79 20 66 61 63 74 6f |such as |by facto|
|000033f0| 72 69 6e 67 2e 29 12 30 | 0d 0a 00 20 20 20 20 20 |ring.).0|... |
|00003400| 20 20 11 32 32 0d 0b 00 | 20 20 20 20 20 11 31 39 | .22...| .19|
|00003410| 11 33 78 20 20 11 31 2d | 20 32 35 20 3d 20 30 20 |.3x .1-| 25 = 0 |
|00003420| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 47 69 | | .2.1Gi|
|00003430| 76 65 6e 20 65 71 75 61 | 74 69 6f 6e 12 30 0d 0a |ven equa|tion.0..|
|00003440| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 32 0d 0b |. | 2..|
|00003450| 00 20 20 20 20 20 20 20 | 20 20 20 11 31 39 11 33 |. | .19.3|
|00003460| 78 20 20 11 31 3d 20 32 | 35 20 20 20 20 20 20 20 |x .1= 2|5 |
|00003470| 20 20 20 11 32 12 31 41 | 64 64 20 32 35 20 74 6f | .2.1A|dd 25 to|
|00003480| 20 62 6f 74 68 20 73 69 | 64 65 73 12 30 0d 0a 00 | both si|des.0...|
|00003490| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 | | 2 |
|000034a0| 11 31 32 35 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |.125... | |
|000034b0| 20 20 11 33 78 20 20 11 | 31 3d 20 11 34 32 32 20 | .3x .|1= .422 |
|000034c0| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 44 69 76 | | .2.1Div|
|000034d0| 69 64 65 20 62 79 20 39 | 12 30 0d 0b 00 20 20 20 |ide by 9|.0... |
|000034e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|000034f0| 39 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |9... | |
|00003500| 20 20 20 20 20 35 0d 0b | 00 20 20 20 20 20 20 20 | 5..|. |
|00003510| 20 20 20 20 20 11 33 78 | 20 11 31 3d 20 11 34 2b | .3x| .1= .4+|
|00003520| 32 20 20 20 20 20 20 20 | 20 20 20 11 32 12 31 45 |2 | .2.1E|
|00003530| 78 74 72 61 63 74 20 73 | 71 75 61 72 65 20 72 6f |xtract s|quare ro|
|00003540| 6f 74 73 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |ots.0...| |
|00003550| 20 20 20 20 20 20 20 20 | 20 11 31 33 0d 0a 00 00 | | .13....|
|00003560| 17 4f 0b 0d 0b 00 57 72 | 6f 6e 67 2e 20 20 57 65 |.O....Wr|ong. We|
|00003570| 20 73 6f 6c 76 65 20 74 | 68 65 20 67 69 76 65 6e | solve t|he given|
|00003580| 20 65 71 75 61 74 69 6f | 6e 20 61 73 20 66 6f 6c | equatio|n as fol|
|00003590| 6c 6f 77 73 2e 20 20 28 | 4e 6f 74 65 20 74 68 61 |lows. (|Note tha|
|000035a0| 74 20 77 65 20 63 6f 75 | 6c 64 20 68 61 76 65 20 |t we cou|ld have |
|000035b0| 0d 0a 00 63 68 6f 73 65 | 6e 20 61 6e 6f 74 68 65 |...chose|n anothe|
|000035c0| 72 20 6d 65 74 68 6f 64 | 20 74 6f 20 73 6f 6c 76 |r method| to solv|
|000035d0| 65 20 74 68 69 73 20 65 | 71 75 61 74 69 6f 6e 2c |e this e|quation,|
|000035e0| 20 73 75 63 68 20 61 73 | 20 62 79 20 66 61 63 74 | such as| by fact|
|000035f0| 6f 72 69 6e 67 2e 29 12 | 30 0d 0a 00 20 20 20 20 |oring.).|0... |
|00003600| 20 20 20 11 32 32 0d 0b | 00 20 20 20 20 20 11 31 | .22..|. .1|
|00003610| 39 11 33 78 20 20 11 31 | 2d 20 32 35 20 3d 20 30 |9.3x .1|- 25 = 0|
|00003620| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 12 31 47 | | .2.1G|
|00003630| 69 76 65 6e 20 65 71 75 | 61 74 69 6f 6e 12 30 0d |iven equ|ation.0.|
|00003640| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 32 0d |.. | 2.|
|00003650| 0b 00 20 20 20 20 20 20 | 20 20 20 20 11 31 39 11 |.. | .19.|
|00003660| 33 78 20 20 11 31 3d 20 | 32 35 20 20 20 20 20 20 |3x .1= |25 |
|00003670| 20 20 20 20 11 32 12 31 | 41 64 64 20 32 35 20 74 | .2.1|Add 25 t|
|00003680| 6f 20 62 6f 74 68 20 73 | 69 64 65 73 12 30 0d 0a |o both s|ides.0..|
|00003690| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 32 20 20 |. | 2 |
|000036a0| 20 11 31 32 35 0d 0b 00 | 20 20 20 20 20 20 20 20 | .125...| |
|000036b0| 20 20 20 11 33 78 20 20 | 11 31 3d 20 11 34 32 32 | .3x |.1= .422|
|000036c0| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 44 69 | | .2.1Di|
|000036d0| 76 69 64 65 20 62 79 20 | 39 12 30 0d 0b 00 20 20 |vide by |9.0... |
|000036e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000036f0| 31 39 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |19... | |
|00003700| 20 20 20 20 20 20 35 0d | 0b 00 20 20 20 20 20 20 | 5.|.. |
|00003710| 20 20 20 20 20 20 11 33 | 78 20 11 31 3d 20 11 34 | .3|x .1= .4|
|00003720| 2b 32 20 20 20 20 20 20 | 20 20 20 20 11 32 12 31 |+2 | .2.1|
|00003730| 45 78 74 72 61 63 74 20 | 73 71 75 61 72 65 20 72 |Extract |square r|
|00003740| 6f 6f 74 73 12 30 0d 0b | 00 20 20 20 20 20 20 20 |oots.0..|. |
|00003750| 20 20 20 20 20 20 20 20 | 20 20 11 31 33 0d 0a 00 | | .13...|
|00003760| 00 17 4f 07 0d 0b 00 57 | 72 6f 6e 67 2e 20 20 57 |..O....W|rong. W|
|00003770| 65 20 63 61 6e 20 73 6f | 6c 76 65 20 74 68 65 20 |e can so|lve the |
|00003780| 67 69 76 65 6e 20 65 71 | 75 61 74 69 6f 6e 20 61 |given eq|uation a|
|00003790| 73 20 66 6f 6c 6c 6f 77 | 73 2e 12 30 0d 0a 00 20 |s follow|s..0... |
|000037a0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|000037b0| 00 20 20 20 20 20 11 31 | 28 11 33 78 20 11 31 2b |. .1|(.3x .1+|
|000037c0| 20 34 29 20 20 3d 20 36 | 34 20 20 20 20 20 20 20 | 4) = 6|4 |
|000037d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000037e0| 20 20 20 20 20 20 20 20 | 11 32 12 31 47 69 76 65 | |.2.1Give|
|000037f0| 6e 20 65 71 75 61 74 69 | 6f 6e 12 30 0d 0a 00 20 |n equati|on.0... |
|00003800| 20 20 20 20 20 20 20 11 | 33 78 20 11 31 2b 20 34 | .|3x .1+ 4|
|00003810| 20 3d 20 11 34 2b 11 31 | 38 20 20 20 20 20 20 20 | = .4+.1|8 |
|00003820| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003830| 20 20 20 20 20 20 20 20 | 11 32 12 31 45 78 74 72 | |.2.1Extr|
|00003840| 61 63 74 20 73 71 75 61 | 72 65 20 72 6f 6f 74 73 |act squa|re roots|
|00003850| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|00003860| 20 11 33 78 20 11 31 3d | 20 2d 34 20 2b 20 38 20 | .3x .1=| -4 + 8 |
|00003870| 20 20 6f 72 20 20 20 11 | 33 78 20 11 31 3d 20 2d | or .|3x .1= -|
|00003880| 34 20 2d 20 38 20 20 20 | 20 20 20 20 20 20 11 32 |4 - 8 | .2|
|00003890| 12 31 53 75 62 74 72 61 | 63 74 20 34 20 66 72 6f |.1Subtra|ct 4 fro|
|000038a0| 6d 20 62 6f 74 68 20 73 | 69 64 65 73 12 30 0d 0a |m both s|ides.0..|
|000038b0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 78 |. | .3x|
|000038c0| 20 11 31 3d 20 34 20 20 | 20 20 20 20 20 20 6f 72 | .1= 4 | or|
|000038d0| 20 20 20 11 33 78 20 11 | 31 3d 20 2d 31 32 20 20 | .3x .|1= -12 |
|000038e0| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 53 6f | | .2.1So|
|000038f0| 6c 76 65 20 66 6f 72 20 | 78 12 30 0d 0a 00 00 17 |lve for |x.0.....|
|00003900| 4f 07 0d 0b 00 4e 6f 2e | 20 20 54 68 69 73 20 69 |O....No.| This i|
|00003910| 73 20 6f 6e 6c 79 20 6f | 6e 65 20 6f 66 20 74 68 |s only o|ne of th|
|00003920| 65 20 73 6f 6c 75 74 69 | 6f 6e 73 2e 20 20 57 65 |e soluti|ons. We|
|00003930| 20 73 6f 6c 76 65 20 61 | 73 20 66 6f 6c 6c 6f 77 | solve a|s follow|
|00003940| 73 2e 12 30 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |s..0... | |
|00003950| 20 20 20 11 32 32 0d 0b | 00 20 20 20 20 20 11 31 | .22..|. .1|
|00003960| 28 11 33 78 20 11 31 2b | 20 34 29 20 20 3d 20 36 |(.3x .1+| 4) = 6|
|00003970| 34 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |4 | |
|00003980| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003990| 11 32 12 31 47 69 76 65 | 6e 20 65 71 75 61 74 69 |.2.1Give|n equati|
|000039a0| 6f 6e 12 30 0d 0a 00 20 | 20 20 20 20 20 20 20 11 |on.0... | .|
|000039b0| 33 78 20 11 31 2b 20 34 | 20 3d 20 11 34 2b 11 31 |3x .1+ 4| = .4+.1|
|000039c0| 38 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |8 | |
|000039d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000039e0| 11 32 12 31 45 78 74 72 | 61 63 74 20 73 71 75 61 |.2.1Extr|act squa|
|000039f0| 72 65 20 72 6f 6f 74 73 | 12 30 0d 0a 00 20 20 20 |re roots|.0... |
|00003a00| 20 20 20 20 20 20 20 20 | 20 11 33 78 20 11 31 3d | | .3x .1=|
|00003a10| 20 2d 34 20 2b 20 38 20 | 20 20 6f 72 20 20 20 11 | -4 + 8 | or .|
|00003a20| 33 78 20 11 31 3d 20 2d | 34 20 2d 20 38 20 20 20 |3x .1= -|4 - 8 |
|00003a30| 20 20 20 20 20 20 11 32 | 12 31 53 75 62 74 72 61 | .2|.1Subtra|
|00003a40| 63 74 20 34 20 66 72 6f | 6d 20 62 6f 74 68 20 73 |ct 4 fro|m both s|
|00003a50| 69 64 65 73 12 30 0d 0a | 00 20 20 20 20 20 20 20 |ides.0..|. |
|00003a60| 20 20 20 20 20 11 33 78 | 20 11 31 3d 20 34 20 20 | .3x| .1= 4 |
|00003a70| 20 20 20 20 20 20 6f 72 | 20 20 20 11 33 78 20 11 | or| .3x .|
|00003a80| 31 3d 20 2d 31 32 20 20 | 20 20 20 20 20 20 20 20 |1= -12 | |
|00003a90| 20 20 11 32 12 31 53 6f | 6c 76 65 20 66 6f 72 20 | .2.1So|lve for |
|00003aa0| 78 12 30 0d 0a 00 00 17 | 4f 07 0d 0b 00 57 72 6f |x.0.....|O....Wro|
|00003ab0| 6e 67 2e 20 20 57 65 20 | 63 61 6e 20 73 6f 6c 76 |ng. We |can solv|
|00003ac0| 65 20 74 68 65 20 67 69 | 76 65 6e 20 65 71 75 61 |e the gi|ven equa|
|00003ad0| 74 69 6f 6e 20 61 73 20 | 66 6f 6c 6c 6f 77 73 2e |tion as |follows.|
|00003ae0| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|00003af0| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 11 31 28 11 | .22... | .1(.|
|00003b00| 33 78 20 11 31 2b 20 34 | 29 20 20 3d 20 36 34 20 |3x .1+ 4|) = 64 |
|00003b10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003b20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00003b30| 12 31 47 69 76 65 6e 20 | 65 71 75 61 74 69 6f 6e |.1Given |equation|
|00003b40| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 11 33 78 |.0... | .3x|
|00003b50| 20 11 31 2b 20 34 20 3d | 20 11 34 2b 11 31 38 20 | .1+ 4 =| .4+.18 |
|00003b60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00003b80| 12 31 45 78 74 72 61 63 | 74 20 73 71 75 61 72 65 |.1Extrac|t square|
|00003b90| 20 72 6f 6f 74 73 12 30 | 0d 0a 00 20 20 20 20 20 | roots.0|... |
|00003ba0| 20 20 20 20 20 20 20 11 | 33 78 20 11 31 3d 20 2d | .|3x .1= -|
|00003bb0| 34 20 2b 20 38 20 20 20 | 6f 72 20 20 20 11 33 78 |4 + 8 |or .3x|
|00003bc0| 20 11 31 3d 20 2d 34 20 | 2d 20 38 20 20 20 20 20 | .1= -4 |- 8 |
|00003bd0| 20 20 20 20 11 32 12 31 | 53 75 62 74 72 61 63 74 | .2.1|Subtract|
|00003be0| 20 34 20 66 72 6f 6d 20 | 62 6f 74 68 20 73 69 64 | 4 from |both sid|
|00003bf0| 65 73 12 30 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |es.0... | |
|00003c00| 20 20 20 11 33 78 20 11 | 31 3d 20 34 20 20 20 20 | .3x .|1= 4 |
|00003c10| 20 20 20 20 6f 72 20 20 | 20 11 33 78 20 11 31 3d | or | .3x .1=|
|00003c20| 20 2d 31 32 20 20 20 20 | 20 20 20 20 20 20 20 20 | -12 | |
|00003c30| 11 32 12 31 53 6f 6c 76 | 65 20 66 6f 72 20 78 12 |.2.1Solv|e for x.|
|00003c40| 30 0d 0a 00 00 17 4f 03 | 0d 0b 00 52 69 67 68 74 |0.....O.|...Right|
|00003c50| 2e 20 20 54 68 65 20 67 | 69 76 65 6e 20 65 71 75 |. The g|iven equ|
|00003c60| 61 74 69 6f 6e 20 68 61 | 73 20 74 77 6f 20 73 6f |ation ha|s two so|
|00003c70| 6c 75 74 69 6f 6e 73 3a | 20 34 20 61 6e 64 20 2d |lutions:| 4 and -|
|00003c80| 31 32 2e 0d 0a 00 00 17 | 4f 06 20 20 20 20 20 20 |12......|O. |
|00003c90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003ca0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003cb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003cc0| 20 20 20 20 20 20 20 20 | 11 32 32 0d 0b 00 11 31 | |.22....1|
|00003cd0| 4e 6f 74 20 71 75 69 74 | 65 2e 20 20 59 6f 75 20 |Not quit|e. You |
|00003ce0| 68 61 76 65 20 79 6f 75 | 72 20 73 69 67 6e 73 20 |have you|r signs |
|00003cf0| 6d 65 73 73 65 64 20 75 | 70 2e 20 20 53 69 6e 63 |messed u|p. Sinc|
|00003d00| 65 20 32 37 20 2d 20 33 | 11 33 78 20 11 31 3d 20 |e 27 - 3|.3x .1= |
|00003d10| 32 11 33 78 20 20 11 31 | 63 61 6e 20 62 65 20 0d |2.3x .1|can be .|
|00003d20| 0a 00 0d 0b 00 66 61 63 | 74 6f 72 65 64 20 61 73 |.....fac|tored as|
|00003d30| 20 28 32 11 33 78 20 11 | 31 2b 20 39 29 28 11 33 | (2.3x .|1+ 9)(.3|
|00003d40| 78 20 11 31 2d 20 33 29 | 20 3d 20 30 20 61 66 74 |x .1- 3)| = 0 aft|
|00003d50| 65 72 20 62 65 69 6e 67 | 20 77 72 69 74 74 65 6e |er being| written|
|00003d60| 20 69 6e 20 73 74 61 6e | 64 61 72 64 20 66 6f 72 | in stan|dard for|
|00003d70| 6d 2c 20 77 65 20 0d 0a | 00 20 20 20 20 20 20 20 |m, we ..|. |
|00003d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003d90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 39 0d 0b | | 9..|
|00003da0| 00 63 61 6e 20 73 65 65 | 20 74 68 61 74 20 74 68 |.can see| that th|
|00003db0| 65 20 73 6f 6c 75 74 69 | 6f 6e 73 20 61 72 65 20 |e soluti|ons are |
|00003dc0| 11 33 78 20 11 31 3d 20 | 2d 11 34 32 20 11 31 61 |.3x .1= |-.42 .1a|
|00003dd0| 6e 64 20 11 33 78 20 11 | 31 3d 20 33 2e 0d 0b 00 |nd .3x .|1= 3....|
|00003de0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003df0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003e00| 20 20 20 20 32 0d 0a 00 | 00 17 4f 03 0d 0b 00 56 | 2...|..O....V|
|00003e10| 65 72 79 20 67 6f 6f 64 | 2e 20 20 54 68 65 20 73 |ery good|. The s|
|00003e20| 6f 6c 75 74 69 6f 6e 73 | 20 6f 66 20 74 68 65 20 |olutions| of the |
|00003e30| 67 69 76 65 6e 20 65 71 | 75 61 74 69 6f 6e 20 61 |given eq|uation a|
|00003e40| 72 65 20 2d 39 2f 32 20 | 61 6e 64 20 33 2e 0d 0a |re -9/2 |and 3...|
|00003e50| 00 00 17 4f 06 0d 0b 00 | 4e 6f 74 20 71 75 69 74 |...O....|Not quit|
|00003e60| 65 2e 20 20 4f 6e 65 20 | 6f 66 20 74 68 65 20 73 |e. One |of the s|
|00003e70| 6f 6c 75 74 69 6f 6e 73 | 20 69 73 20 33 2c 20 62 |olutions| is 3, b|
|00003e80| 75 74 20 74 68 65 20 6f | 74 68 65 72 20 73 6f 6c |ut the o|ther sol|
|00003e90| 75 74 69 6f 6e 20 69 73 | 20 2d 39 2f 32 2e 20 0d |ution is| -9/2. .|
|00003ea0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00003eb0| 20 20 20 20 11 32 32 0d | 0b 00 11 31 53 69 6e 63 | .22.|...1Sinc|
|00003ec0| 65 20 32 37 20 2d 20 33 | 11 33 78 20 11 31 3d 20 |e 27 - 3|.3x .1= |
|00003ed0| 32 11 33 78 20 20 11 31 | 63 61 6e 20 62 65 20 66 |2.3x .1|can be f|
|00003ee0| 61 63 74 6f 72 65 64 20 | 61 73 20 28 32 11 33 78 |actored |as (2.3x|
|00003ef0| 20 11 31 2b 20 39 29 28 | 11 33 78 20 11 31 2d 20 | .1+ 9)(|.3x .1- |
|00003f00| 33 29 20 3d 20 30 20 61 | 66 74 65 72 20 62 65 69 |3) = 0 a|fter bei|
|00003f10| 6e 67 20 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |ng ... | |
|00003f20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003f30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003f40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003f50| 20 20 20 39 0d 0b 00 77 | 72 69 74 74 65 6e 20 69 | 9...w|ritten i|
|00003f60| 6e 20 73 74 61 6e 64 61 | 72 64 20 66 6f 72 6d 2c |n standa|rd form,|
|00003f70| 20 77 65 20 73 65 65 20 | 74 68 61 74 20 74 68 65 | we see |that the|
|00003f80| 20 73 6f 6c 75 74 69 6f | 6e 73 20 61 72 65 20 11 | solutio|ns are .|
|00003f90| 33 78 20 11 31 3d 20 2d | 11 34 32 20 11 31 61 6e |3x .1= -|.42 .1an|
|00003fa0| 64 20 11 33 78 20 11 31 | 3d 20 33 2e 0d 0b 00 20 |d .3x .1|= 3.... |
|00003fb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003fc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003fd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 0d 0a 00 | | 2...|
|00003ff0| 00 17 4f 06 0d 0b 00 4e | 6f 74 20 71 75 69 74 65 |..O....N|ot quite|
|00004000| 2e 20 20 4f 6e 65 20 6f | 66 20 74 68 65 20 73 6f |. One o|f the so|
|00004010| 6c 75 74 69 6f 6e 73 20 | 69 73 20 2d 39 2f 32 2c |lutions |is -9/2,|
|00004020| 20 62 75 74 20 74 68 65 | 20 6f 74 68 65 72 20 73 | but the| other s|
|00004030| 6f 6c 75 74 69 6f 6e 20 | 69 73 20 33 2e 20 0d 0a |olution |is 3. ..|
|00004040| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00004050| 20 20 20 11 32 32 0d 0b | 00 11 31 53 69 6e 63 65 | .22..|..1Since|
|00004060| 20 32 37 20 2d 20 33 11 | 33 78 20 11 31 3d 20 32 | 27 - 3.|3x .1= 2|
|00004070| 11 33 78 20 20 11 31 63 | 61 6e 20 62 65 20 66 61 |.3x .1c|an be fa|
|00004080| 63 74 6f 72 65 64 20 61 | 73 20 28 32 11 33 78 20 |ctored a|s (2.3x |
|00004090| 11 31 2b 20 39 29 28 11 | 33 78 20 11 31 2d 20 33 |.1+ 9)(.|3x .1- 3|
|000040a0| 29 20 3d 20 30 20 61 66 | 74 65 72 20 62 65 69 6e |) = 0 af|ter bein|
|000040b0| 67 20 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |g ... | |
|000040c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000040d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000040e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000040f0| 20 20 39 0d 0b 00 77 72 | 69 74 74 65 6e 20 69 6e | 9...wr|itten in|
|00004100| 20 73 74 61 6e 64 61 72 | 64 20 66 6f 72 6d 2c 20 | standar|d form, |
|00004110| 77 65 20 73 65 65 20 74 | 68 61 74 20 74 68 65 20 |we see t|hat the |
|00004120| 73 6f 6c 75 74 69 6f 6e | 73 20 61 72 65 20 11 33 |solution|s are .3|
|00004130| 78 20 11 31 3d 20 2d 11 | 34 32 20 11 31 61 6e 64 |x .1= -.|42 .1and|
|00004140| 20 11 33 78 20 11 31 3d | 20 33 2e 0d 0b 00 20 20 | .3x .1=| 3.... |
|00004150| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004160| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004170| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004180| 20 20 20 20 20 20 20 20 | 20 20 20 32 0d 0a 00 00 | | 2....|
|00004190| 17 4f 04 0d 0b 00 49 6e | 63 6f 72 72 65 63 74 2e |.O....In|correct.|
|000041a0| 20 20 59 6f 75 20 73 68 | 6f 75 6c 64 20 73 6f 6c | You sh|ould sol|
|000041b0| 76 65 20 74 68 69 73 20 | 65 71 75 61 74 69 6f 6e |ve this |equation|
|000041c0| 20 62 79 20 63 6f 6d 70 | 6c 65 74 69 6e 67 20 74 | by comp|leting t|
|000041d0| 68 65 20 73 71 75 61 72 | 65 2e 20 20 54 72 79 20 |he squar|e. Try |
|000041e0| 0d 0a 00 61 67 61 69 6e | 2e 0d 0a 00 00 17 4f 04 |...again|......O.|
|000041f0| 0d 0b 00 49 6e 63 6f 72 | 72 65 63 74 2e 20 20 59 |...Incor|rect. Y|
|00004200| 6f 75 20 73 68 6f 75 6c | 64 20 73 6f 6c 76 65 20 |ou shoul|d solve |
|00004210| 74 68 69 73 20 65 71 75 | 61 74 69 6f 6e 20 62 79 |this equ|ation by|
|00004220| 20 63 6f 6d 70 6c 65 74 | 69 6e 67 20 74 68 65 20 | complet|ing the |
|00004230| 73 71 75 61 72 65 2e 20 | 20 54 72 79 0d 0a 00 61 |square. | Try...a|
|00004240| 67 61 69 6e 2e 0d 0a 00 | 00 17 4f 04 0d 0b 00 49 |gain....|..O....I|
|00004250| 6e 63 6f 72 72 65 63 74 | 2e 20 20 59 6f 75 20 73 |ncorrect|. You s|
|00004260| 68 6f 75 6c 64 20 73 6f | 6c 76 65 20 74 68 69 73 |hould so|lve this|
|00004270| 20 65 71 75 61 74 69 6f | 6e 20 62 79 20 63 6f 6d | equatio|n by com|
|00004280| 70 6c 65 74 69 6e 67 20 | 74 68 65 20 73 71 75 61 |pleting |the squa|
|00004290| 72 65 2e 20 20 54 72 79 | 0d 0a 00 61 67 61 69 6e |re. Try|...again|
|000042a0| 2e 0d 0a 00 00 17 4f 03 | 0d 0b 00 56 65 72 79 20 |......O.|...Very |
|000042b0| 67 6f 6f 64 2e 20 20 0d | 0a 00 00 17 4f 03 0d 0b |good. .|....O...|
|000042c0| 00 56 65 72 79 20 67 6f | 6f 64 2e 20 20 54 68 65 |.Very go|od. The|
|000042d0| 20 73 6f 6c 75 74 69 6f | 6e 20 6f 66 20 74 68 65 | solutio|n of the|
|000042e0| 20 67 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 20 | given e|quation |
|000042f0| 69 73 20 33 2f 32 2e 0d | 0a 00 00 17 4f 0b 0d 0b |is 3/2..|....O...|
|00004300| 00 57 72 6f 6e 67 2e 20 | 20 57 65 20 63 61 6e 20 |.Wrong. | We can |
|00004310| 73 6f 6c 76 65 20 74 68 | 65 20 67 69 76 65 6e 20 |solve th|e given |
|00004320| 65 71 75 61 74 69 6f 6e | 20 61 73 20 66 6f 6c 6c |equation| as foll|
|00004330| 6f 77 73 2e 20 12 30 0d | 0a 00 20 20 20 20 20 20 |ows. .0.|.. |
|00004340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004350| 20 20 20 11 32 32 20 20 | 20 20 32 0d 0b 00 20 20 | .22 | 2... |
|00004360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004370| 11 31 28 11 33 78 20 11 | 31 2d 20 33 29 20 20 3d |.1(.3x .|1- 3) =|
|00004380| 20 11 33 78 20 20 20 20 | 20 20 20 20 20 20 20 11 | .3x | .|
|00004390| 32 12 31 47 69 76 65 6e | 20 65 71 75 61 74 69 6f |2.1Given| equatio|
|000043a0| 6e 12 30 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |n.0... | |
|000043b0| 20 20 20 20 20 20 20 20 | 20 20 32 20 20 20 20 32 | | 2 2|
|000043c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 12 | | .|
|000043d0| 31 20 20 20 20 20 20 20 | 20 20 20 32 20 20 20 20 |1 | 2 |
|000043e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 12 | | .|
|000043f0| 30 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |0... | |
|00004400| 20 11 31 28 11 33 78 20 | 11 31 2d 20 33 29 20 20 | .1(.3x |.1- 3) |
|00004410| 2d 20 11 33 78 20 20 11 | 31 3d 20 30 20 20 20 20 |- .3x .|1= 0 |
|00004420| 20 20 20 20 20 20 20 11 | 32 12 31 53 75 62 74 72 | .|2.1Subtr|
|00004430| 61 63 74 20 78 20 20 66 | 72 6f 6d 20 62 6f 74 68 |act x f|rom both|
|00004440| 20 73 69 64 65 73 12 30 | 0d 0a 00 0d 0b 00 11 31 | sides.0|.......1|
|00004450| 5b 28 11 33 78 20 11 31 | 2d 20 33 29 20 2b 20 11 |[(.3x .1|- 3) + .|
|00004460| 33 78 11 31 5d 5b 28 11 | 33 78 20 11 31 2d 20 33 |3x.1][(.|3x .1- 3|
|00004470| 29 20 2d 20 11 33 78 11 | 31 5d 20 3d 20 30 20 20 |) - .3x.|1] = 0 |
|00004480| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 46 61 63 | | .2.1Fac|
|00004490| 74 6f 72 65 64 20 66 6f | 72 6d 12 30 0d 0a 00 0d |tored fo|rm.0....|
|000044a0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000044b0| 20 20 20 20 20 11 31 2d | 36 11 33 78 20 11 31 2b | .1-|6.3x .1+|
|000044c0| 20 39 20 3d 20 30 20 20 | 20 20 20 20 20 20 20 20 | 9 = 0 | |
|000044d0| 20 11 32 12 31 53 69 6d | 70 6c 69 66 79 12 30 0d | .2.1Sim|plify.0.|
|000044e0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000044f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00004500| 31 33 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |13... | |
|00004510| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|00004520| 78 20 11 31 3d 20 11 34 | 32 20 20 20 20 20 20 20 |x .1= .4|2 |
|00004530| 20 20 20 20 11 32 12 31 | 53 6f 6c 75 74 69 6f 6e | .2.1|Solution|
|00004540| 12 30 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|00004550| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004560| 20 20 11 31 32 0d 0a 00 | 00 17 4f 0b 0d 0b 00 57 | .12...|..O....W|
|00004570| 72 6f 6e 67 2e 20 20 57 | 65 20 63 61 6e 20 73 6f |rong. W|e can so|
|00004580| 6c 76 65 20 74 68 65 20 | 67 69 76 65 6e 20 65 71 |lve the |given eq|
|00004590| 75 61 74 69 6f 6e 20 61 | 73 20 66 6f 6c 6c 6f 77 |uation a|s follow|
|000045a0| 73 2e 20 12 30 0d 0a 00 | 20 20 20 20 20 20 20 20 |s. .0...| |
|000045b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000045c0| 20 11 32 32 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | .22 |2... |
|000045d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|000045e0| 28 11 33 78 20 11 31 2d | 20 33 29 20 20 3d 20 11 |(.3x .1-| 3) = .|
|000045f0| 33 78 20 20 20 20 20 20 | 20 20 20 20 20 11 32 12 |3x | .2.|
|00004600| 31 47 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 12 |1Given e|quation.|
|00004610| 30 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |0... | |
|00004620| 20 20 20 20 20 20 20 20 | 32 20 20 20 20 32 20 20 | |2 2 |
|00004630| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 12 31 20 | | .1 |
|00004640| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 20 20 | | 2 |
|00004650| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 12 30 0d | | .0.|
|00004660| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |.. | .|
|00004670| 31 28 11 33 78 20 11 31 | 2d 20 33 29 20 20 2d 20 |1(.3x .1|- 3) - |
|00004680| 11 33 78 20 20 11 31 3d | 20 30 20 20 20 20 20 20 |.3x .1=| 0 |
|00004690| 20 20 20 20 20 11 32 12 | 31 53 75 62 74 72 61 63 | .2.|1Subtrac|
|000046a0| 74 20 78 20 20 66 72 6f | 6d 20 62 6f 74 68 20 73 |t x fro|m both s|
|000046b0| 69 64 65 73 12 30 0d 0a | 00 0d 0b 00 11 31 5b 28 |ides.0..|.....1[(|
|000046c0| 11 33 78 20 11 31 2d 20 | 33 29 20 2b 20 11 33 78 |.3x .1- |3) + .3x|
|000046d0| 11 31 5d 5b 28 11 33 78 | 20 11 31 2d 20 33 29 20 |.1][(.3x| .1- 3) |
|000046e0| 2d 20 11 33 78 11 31 5d | 20 3d 20 30 20 20 20 20 |- .3x.1]| = 0 |
|000046f0| 20 20 20 20 20 20 20 11 | 32 12 31 46 61 63 74 6f | .|2.1Facto|
|00004700| 72 65 64 20 66 6f 72 6d | 12 30 0d 0a 00 0d 0b 00 |red form|.0......|
|00004710| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004720| 20 20 20 11 31 2d 36 11 | 33 78 20 11 31 2b 20 39 | .1-6.|3x .1+ 9|
|00004730| 20 3d 20 30 20 20 20 20 | 20 20 20 20 20 20 20 11 | = 0 | .|
|00004740| 32 12 31 53 69 6d 70 6c | 69 66 79 12 30 0d 0a 00 |2.1Simpl|ify.0...|
|00004750| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004760| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 33 | | .13|
|00004770| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00004780| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 78 20 | | .3x |
|00004790| 11 31 3d 20 11 34 32 20 | 20 20 20 20 20 20 20 20 |.1= .42 | |
|000047a0| 20 20 11 32 12 31 53 6f | 6c 75 74 69 6f 6e 12 30 | .2.1So|lution.0|
|000047b0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000047c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000047d0| 11 31 32 0d 0a 00 00 17 | 4f 04 0d 0b 00 57 72 6f |.12.....|O....Wro|
|000047e0| 6e 67 2e 20 20 54 68 65 | 20 67 69 76 65 6e 20 65 |ng. The| given e|
|000047f0| 71 75 61 74 69 6f 6e 20 | 64 6f 65 73 20 68 61 76 |quation |does hav|
|00004800| 65 20 61 20 73 6f 6c 75 | 74 69 6f 6e 2e 20 20 52 |e a solu|tion. R|
|00004810| 65 76 69 65 77 20 49 6e | 74 65 67 72 61 74 65 64 |eview In|tegrated|
|00004820| 20 0d 0a 00 45 78 61 6d | 70 6c 65 20 34 20 61 6e | ...Exam|ple 4 an|
|00004830| 64 20 74 68 65 6e 20 74 | 72 79 20 61 67 61 69 6e |d then t|ry again|
|00004840| 2e 0d 0a 00 00 17 4f 06 | 0d 0b 00 56 65 72 79 20 |......O.|...Very |
|00004850| 67 6f 6f 64 2e 20 20 20 | 12 30 0d 0a 00 20 20 20 |good. |.0... |
|00004860| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 20 20 | | .22 |
|00004870| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 | | 2 |
|00004880| 20 20 20 20 20 20 32 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00004890| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|000048a0| 20 11 33 78 20 20 11 31 | 2d 20 36 11 33 78 20 11 | .3x .1|- 6.3x .|
|000048b0| 31 2d 20 31 36 20 3d 20 | 11 33 78 20 20 11 31 2d |1- 16 = |.3x .1-|
|000048c0| 20 36 11 33 78 20 11 31 | 2b 20 33 20 20 2d 20 31 | 6.3x .1|+ 3 - 1|
|000048d0| 36 20 2d 20 33 0d 0a 00 | 20 20 20 20 20 20 20 20 |6 - 3...| |
|000048e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000048f0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|00004900| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00004910| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 3d 20 28 | | .1= (|
|00004920| 11 33 78 20 11 31 2d 20 | 33 29 20 20 2d 20 32 35 |.3x .1- |3) - 25|
|00004930| 0d 0a 00 00 17 4f 07 0d | 0b 00 49 6e 63 6f 72 72 |.....O..|..Incorr|
|00004940| 65 63 74 2e 12 30 0d 0a | 00 20 20 20 20 20 20 11 |ect..0..|. .|
|00004950| 32 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |22 | |
|00004960| 32 20 20 20 20 20 20 20 | 20 20 32 20 20 20 20 20 |2 | 2 |
|00004970| 20 20 20 20 32 20 20 20 | 20 20 12 31 20 20 20 20 | 2 | .1 |
|00004980| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 20 | | 2 |
|00004990| 20 20 12 30 0d 0b 00 20 | 20 20 20 20 11 33 78 20 | .0... | .3x |
|000049a0| 20 11 31 2d 20 36 11 33 | 78 20 11 31 2d 20 31 36 | .1- 6.3|x .1- 16|
|000049b0| 20 3d 20 11 33 78 20 20 | 11 31 2d 20 36 11 33 78 | = .3x |.1- 6.3x|
|000049c0| 20 11 31 2b 20 33 20 20 | 2d 20 31 36 20 2d 20 33 | .1+ 3 |- 16 - 3|
|000049d0| 20 20 20 20 20 20 11 32 | 12 31 41 64 64 20 61 6e | .2|.1Add an|
|000049e0| 64 20 73 75 62 74 72 61 | 63 74 20 33 20 12 30 0d |d subtra|ct 3 .0.|
|000049f0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00004a00| 20 20 20 20 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | |2... |
|00004a10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|00004a20| 3d 20 28 11 33 78 20 20 | 11 31 2d 20 36 11 33 78 |= (.3x |.1- 6.3x|
|00004a30| 20 11 31 2b 20 39 29 20 | 2d 20 32 35 20 20 20 20 | .1+ 9) |- 25 |
|00004a40| 20 20 20 20 20 11 32 12 | 31 47 72 6f 75 70 20 74 | .2.|1Group t|
|00004a50| 65 72 6d 73 12 30 0d 0a | 00 20 20 20 20 20 20 20 |erms.0..|. |
|00004a60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004a70| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | 2...| |
|00004a80| 20 20 20 20 20 20 20 20 | 20 20 11 31 3d 20 28 11 | | .1= (.|
|00004a90| 33 78 20 11 31 2d 20 33 | 29 20 20 2d 20 32 35 20 |3x .1- 3|) - 25 |
|00004aa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 12 | | .2.|
|00004ab0| 31 44 69 66 66 65 72 65 | 6e 63 65 20 6f 66 20 74 |1Differe|nce of t|
|00004ac0| 77 6f 20 73 71 75 61 72 | 65 73 12 30 0d 0a 00 00 |wo squar|es.0....|
|00004ad0| 17 4f 05 0d 0b 00 57 72 | 6f 6e 67 2e 20 20 49 74 |.O....Wr|ong. It|
|00004ae0| 20 6c 6f 6f 6b 73 20 6c | 69 6b 65 20 79 6f 75 20 | looks l|ike you |
|00004af0| 61 64 64 65 64 20 39 20 | 74 6f 20 63 6f 6d 70 6c |added 9 |to compl|
|00004b00| 65 74 65 20 74 68 65 20 | 73 71 75 61 72 65 2c 20 |ete the |square, |
|00004b10| 62 75 74 20 74 68 65 6e | 20 79 6f 75 20 0d 0a 00 |but then| you ...|
|00004b20| 61 64 64 65 64 20 39 20 | 61 67 61 69 6e 20 77 68 |added 9 |again wh|
|00004b30| 65 72 65 20 79 6f 75 20 | 73 68 6f 75 6c 64 20 68 |ere you |should h|
|00004b40| 61 76 65 20 73 75 62 74 | 72 61 63 74 65 64 20 39 |ave subt|racted 9|
|00004b50| 20 69 6e 20 6f 72 64 65 | 72 20 74 6f 20 65 6e 64 | in orde|r to end|
|00004b60| 20 75 70 20 77 69 74 68 | 20 0d 0a 00 61 6e 20 65 | up with| ...an e|
|00004b70| 71 75 69 76 61 6c 65 6e | 74 20 65 78 70 72 65 73 |quivalen|t expres|
|00004b80| 73 69 6f 6e 2e 0d 0a 00 | 00 17 4f 03 0d 0b 00 53 |sion....|..O....S|
|00004b90| 6f 72 72 79 2c 20 6f 6e | 65 20 6f 66 20 74 68 65 |orry, on|e of the|
|00004ba0| 73 65 20 61 6e 73 77 65 | 72 73 20 69 73 20 63 6f |se answe|rs is co|
|00004bb0| 72 72 65 63 74 2e 20 20 | 54 72 79 20 61 67 61 69 |rrect. |Try agai|
|00004bc0| 6e 2e 0d 0a 00 00 17 4f | 08 20 20 20 20 20 20 20 |n......O|. |
|00004bd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004c00| 11 32 32 0d 0b 00 11 31 | 57 72 6f 6e 67 2e 20 20 |.22....1|Wrong. |
|00004c10| 54 6f 20 73 6f 6c 76 65 | 2c 20 77 65 20 75 73 65 |To solve|, we use|
|00004c20| 20 74 68 65 20 70 6f 73 | 69 74 69 6f 6e 20 65 71 | the pos|ition eq|
|00004c30| 75 61 74 69 6f 6e 20 11 | 33 73 20 11 31 3d 20 2d |uation .|3s .1= -|
|00004c40| 31 36 11 33 74 20 20 11 | 31 2b 20 11 33 76 20 74 |16.3t .|1+ .3v t|
|00004c50| 20 11 31 2b 20 11 33 73 | 20 20 11 31 77 69 74 68 | .1+ .3s| .1with|
|00004c60| 20 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 | ... | |
|00004c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004c80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004c90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004ca0| 11 32 30 20 20 20 20 20 | 30 0d 0a 00 11 31 74 68 |.20 |0....1th|
|00004cb0| 65 20 69 6e 69 74 69 61 | 6c 20 76 65 6c 6f 63 69 |e initia|l veloci|
|00004cc0| 74 79 20 11 33 76 20 20 | 11 31 3d 20 30 2c 20 74 |ty .3v |.1= 0, t|
|00004cd0| 68 65 20 69 6e 69 74 69 | 61 6c 20 68 65 69 67 68 |he initi|al heigh|
|00004ce0| 74 20 11 33 73 20 20 11 | 31 3d 20 31 30 35 33 2c |t .3s .|1= 1053,|
|00004cf0| 20 61 6e 64 20 74 68 65 | 20 68 65 69 67 68 74 0d | and the| height.|
|00004d00| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00004d10| 20 20 20 20 20 20 20 20 | 11 32 30 20 20 20 20 20 | |.20 |
|00004d20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004d30| 20 20 20 20 20 30 0d 0b | 00 20 20 20 20 20 20 20 | 0..|. |
|00004d40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004d50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 0d | | 2.|
|00004d60| 0b 00 11 33 73 20 11 31 | 3d 20 30 2e 20 20 53 6f |...3s .1|= 0. So|
|00004d70| 6c 76 69 6e 67 20 74 68 | 65 20 65 71 75 61 74 69 |lving th|e equati|
|00004d80| 6f 6e 20 30 20 3d 20 2d | 31 36 11 33 74 20 20 11 |on 0 = -|16.3t .|
|00004d90| 31 2b 20 31 30 35 33 20 | 66 6f 72 20 11 33 74 11 |1+ 1053 |for .3t.|
|00004da0| 31 2c 20 77 65 20 6f 62 | 74 61 69 6e 20 74 68 65 |1, we ob|tain the|
|00004db0| 20 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 | ... | |
|00004dc0| 20 20 20 11 34 44 32 32 | 0d 0b 00 20 20 20 20 20 | .4D22|... |
|00004dd0| 20 20 20 20 20 20 20 20 | 11 31 39 11 34 53 20 11 | |.19.4S .|
|00004de0| 31 31 33 0d 0b 00 73 6f | 6c 75 74 69 6f 6e 20 11 |113...so|lution .|
|00004df0| 33 74 20 11 31 3d 20 11 | 34 32 32 32 32 32 20 7e |3t .1= .|422222 ~|
|00004e00| 20 11 31 38 2e 31 31 20 | 73 65 63 6f 6e 64 73 2e | .18.11 |seconds.|
|00004e10| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00004e20| 20 20 34 0d 0a 00 00 17 | 4f 04 0d 0b 00 52 69 67 | 4.....|O....Rig|
|00004e30| 68 74 2e 20 20 49 74 20 | 77 69 6c 6c 20 74 61 6b |ht. It |will tak|
|00004e40| 65 20 61 70 70 72 6f 78 | 69 6d 61 74 65 6c 79 20 |e approx|imately |
|00004e50| 38 2e 31 31 20 73 65 63 | 6f 6e 64 73 20 66 6f 72 |8.11 sec|onds for|
|00004e60| 20 74 68 65 20 72 6f 63 | 6b 20 74 6f 20 68 69 74 | the roc|k to hit|
|00004e70| 20 74 68 65 20 0d 0a 00 | 77 61 74 65 72 2e 0d 0a | the ...|water...|
|00004e80| 00 00 17 4f 08 20 20 20 | 20 20 20 20 20 20 20 20 |...O. | |
|00004e90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004ea0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004eb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 0d | | .22.|
|00004ec0| 0b 00 11 31 57 72 6f 6e | 67 2e 20 20 54 6f 20 73 |...1Wron|g. To s|
|00004ed0| 6f 6c 76 65 2c 20 77 65 | 20 75 73 65 20 74 68 65 |olve, we| use the|
|00004ee0| 20 70 6f 73 69 74 69 6f | 6e 20 65 71 75 61 74 69 | positio|n equati|
|00004ef0| 6f 6e 20 11 33 73 20 11 | 31 3d 20 2d 31 36 11 33 |on .3s .|1= -16.3|
|00004f00| 74 20 20 11 31 2b 20 11 | 33 76 20 74 20 11 31 2b |t .1+ .|3v t .1+|
|00004f10| 20 11 33 73 20 20 11 31 | 77 69 74 68 20 0d 0b 00 | .3s .1|with ...|
|00004f20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004f30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004f40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004f50| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 30 20 | | .20 |
|00004f60| 20 20 20 20 30 0d 0a 00 | 11 31 74 68 65 20 69 6e | 0...|.1the in|
|00004f70| 69 74 69 61 6c 20 76 65 | 6c 6f 63 69 74 79 20 11 |itial ve|locity .|
|00004f80| 33 76 20 20 11 31 3d 20 | 30 2c 20 74 68 65 20 69 |3v .1= |0, the i|
|00004f90| 6e 69 74 69 61 6c 20 68 | 65 69 67 68 74 20 11 33 |nitial h|eight .3|
|00004fa0| 73 20 20 11 31 3d 20 31 | 30 35 33 2c 20 61 6e 64 |s .1= 1|053, and|
|00004fb0| 20 74 68 65 20 68 65 69 | 67 68 74 0d 0b 00 20 20 | the hei|ght... |
|00004fc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004fd0| 20 20 20 20 11 32 30 20 | 20 20 20 20 20 20 20 20 | .20 | |
|00004fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004ff0| 20 30 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 | 0... | |
|00005000| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005010| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0b 00 11 33 | | 2....3|
|00005020| 73 20 11 31 3d 20 30 2e | 20 20 53 6f 6c 76 69 6e |s .1= 0.| Solvin|
|00005030| 67 20 74 68 65 20 65 71 | 75 61 74 69 6f 6e 20 30 |g the eq|uation 0|
|00005040| 20 3d 20 2d 31 36 11 33 | 74 20 20 11 31 2b 20 31 | = -16.3|t .1+ 1|
|00005050| 30 35 33 20 66 6f 72 20 | 11 33 74 11 31 2c 20 77 |053 for |.3t.1, w|
|00005060| 65 20 6f 62 74 61 69 6e | 20 74 68 65 20 0d 0a 00 |e obtain| the ...|
|00005070| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00005080| 34 44 32 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |4D22... | |
|00005090| 20 20 20 20 11 31 39 11 | 34 53 20 11 31 31 33 0d | .19.|4S .113.|
|000050a0| 0b 00 73 6f 6c 75 74 69 | 6f 6e 20 11 33 74 20 11 |..soluti|on .3t .|
|000050b0| 31 3d 20 11 34 32 32 32 | 32 32 20 7e 20 11 31 38 |1= .4222|22 ~ .18|
|000050c0| 2e 31 31 20 73 65 63 6f | 6e 64 73 2e 0d 0b 00 20 |.11 seco|nds.... |
|000050d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 34 0d | | 4.|
|000050e0| 0a 00 00 17 4f 08 20 20 | 20 20 20 20 20 20 20 20 |....O. | |
|000050f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005100| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005110| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 | | .22|
|00005120| 0d 0b 00 11 31 57 72 6f | 6e 67 2e 20 20 54 6f 20 |....1Wro|ng. To |
|00005130| 73 6f 6c 76 65 2c 20 77 | 65 20 75 73 65 20 74 68 |solve, w|e use th|
|00005140| 65 20 70 6f 73 69 74 69 | 6f 6e 20 65 71 75 61 74 |e positi|on equat|
|00005150| 69 6f 6e 20 11 33 73 20 | 11 31 3d 20 2d 31 36 11 |ion .3s |.1= -16.|
|00005160| 33 74 20 20 11 31 2b 20 | 11 33 76 20 74 20 11 31 |3t .1+ |.3v t .1|
|00005170| 2b 20 11 33 73 20 20 11 | 31 77 69 74 68 20 0d 0b |+ .3s .|1with ..|
|00005180| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00005190| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000051a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000051b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 30 | | .20|
|000051c0| 20 20 20 20 20 30 0d 0a | 00 11 31 74 68 65 20 69 | 0..|..1the i|
|000051d0| 6e 69 74 69 61 6c 20 76 | 65 6c 6f 63 69 74 79 20 |nitial v|elocity |
|000051e0| 11 33 76 20 20 11 31 3d | 20 30 2c 20 74 68 65 20 |.3v .1=| 0, the |
|000051f0| 69 6e 69 74 69 61 6c 20 | 68 65 69 67 68 74 20 11 |initial |height .|
|00005200| 33 73 20 20 11 31 3d 20 | 31 30 35 33 2c 20 61 6e |3s .1= |1053, an|
|00005210| 64 20 74 68 65 20 68 65 | 69 67 68 74 0d 0b 00 20 |d the he|ight... |
|00005220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005230| 20 20 20 20 20 11 32 30 | 20 20 20 20 20 20 20 20 | .20| |
|00005240| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005250| 20 20 30 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | 0... | |
|00005260| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005270| 20 20 20 20 20 20 20 20 | 20 20 20 32 0d 0b 00 11 | | 2....|
|00005280| 33 73 20 11 31 3d 20 30 | 2e 20 20 53 6f 6c 76 69 |3s .1= 0|. Solvi|
|00005290| 6e 67 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 20 |ng the e|quation |
|000052a0| 30 20 3d 20 2d 31 36 11 | 33 74 20 20 11 31 2b 20 |0 = -16.|3t .1+ |
|000052b0| 31 30 35 33 20 66 6f 72 | 20 11 33 74 11 31 2c 20 |1053 for| .3t.1, |
|000052c0| 77 65 20 6f 62 74 61 69 | 6e 20 74 68 65 20 0d 0a |we obtai|n the ..|
|000052d0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000052e0| 11 34 44 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 |.4D22...| |
|000052f0| 20 20 20 20 20 11 31 39 | 11 34 53 20 11 31 31 33 | .19|.4S .113|
|00005300| 0d 0b 00 73 6f 6c 75 74 | 69 6f 6e 20 11 33 74 20 |...solut|ion .3t |
|00005310| 11 31 3d 20 11 34 32 32 | 32 32 32 20 7e 20 11 31 |.1= .422|222 ~ .1|
|00005320| 38 2e 31 31 20 73 65 63 | 6f 6e 64 73 2e 0d 0b 00 |8.11 sec|onds....|
|00005330| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 34 | | 4|
|00005340| 0d 0a 00 00 17 4f 03 20 | 20 20 20 20 20 20 20 20 |.....O. | |
|00005350| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005370| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005380| 11 34 44 32 0d 0b 00 11 | 31 52 69 67 68 74 2e 20 |.4D2....|1Right. |
|00005390| 20 55 73 69 6e 67 20 74 | 68 65 20 51 75 61 64 72 | Using t|he Quadr|
|000053a0| 61 74 69 63 20 46 6f 72 | 6d 75 6c 61 2c 20 77 65 |atic For|mula, we|
|000053b0| 20 6f 62 74 61 69 6e 20 | 11 33 78 20 11 31 3d 20 | obtain |.3x .1= |
|000053c0| 2d 35 20 11 34 2b 20 53 | 20 11 31 35 2e 0d 0a 00 |-5 .4+ S| .15....|
|000053d0| 00 17 4f 06 0d 0b 00 57 | 72 6f 6e 67 2e 20 20 55 |..O....W|rong. U|
|000053e0| 73 69 6e 67 20 11 33 61 | 20 11 31 3d 20 31 2c 20 |sing .3a| .1= 1, |
|000053f0| 11 33 62 20 11 31 3d 20 | 31 30 2c 20 61 6e 64 20 |.3b .1= |10, and |
|00005400| 11 33 63 20 11 31 3d 20 | 32 30 2c 20 77 65 20 73 |.3c .1= |20, we s|
|00005410| 6f 6c 76 65 20 61 73 20 | 66 6f 6c 6c 6f 77 73 2e |olve as |follows.|
|00005420| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|00005430| 20 20 20 20 20 20 11 34 | 67 32 32 32 32 32 32 32 | .4|g2222222|
|00005440| 32 32 32 32 32 32 32 32 | 20 20 20 20 20 20 20 20 |22222222| |
|00005450| 20 20 20 67 32 20 20 20 | 20 20 20 20 20 20 20 20 | g2 | |
|00005460| 20 67 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 | g... | |
|00005470| 20 20 20 20 20 66 20 20 | 20 20 11 32 32 20 20 20 | f | .22 |
|00005480| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005490| 20 20 11 34 66 20 20 20 | 20 20 20 20 20 20 20 20 | .4f | |
|000054a0| 20 20 66 20 20 20 20 20 | 20 20 20 20 20 20 67 0d | f | g.|
|000054b0| 0b 00 20 20 20 20 20 20 | 20 20 20 11 31 2d 31 30 |.. | .1-10|
|000054c0| 20 11 34 2b 20 76 20 11 | 31 28 31 30 29 20 20 2d | .4+ v .|1(10) -|
|000054d0| 20 34 28 31 29 28 32 30 | 29 20 20 20 2d 31 30 20 | 4(1)(20|) -10 |
|000054e0| 11 34 2b 20 76 20 11 31 | 32 30 20 20 20 2d 31 30 |.4+ v .1|20 -10|
|000054f0| 20 11 34 2b 20 11 31 32 | 11 34 76 20 11 31 35 20 | .4+ .12|.4v .15 |
|00005500| 20 20 20 20 20 20 20 20 | 11 34 66 0d 0b 00 20 20 | |.4f... |
|00005510| 20 20 20 11 33 78 20 11 | 31 3d 20 11 34 32 32 32 | .3x .|1= .4222|
|00005520| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00005530| 32 32 32 32 32 20 11 31 | 3d 20 11 34 32 32 32 32 |22222 .1|= .42222|
|00005540| 32 32 32 32 32 32 20 11 | 31 3d 20 11 34 32 32 32 |222222 .|1= .4222|
|00005550| 32 32 32 32 32 32 32 20 | 11 31 3d 20 2d 35 20 11 |2222222 |.1= -5 .|
|00005560| 34 2b 20 76 20 11 31 35 | 0d 0b 00 20 20 20 20 20 |4+ v .15|... |
|00005570| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 28 | | 2(|
|00005580| 31 29 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |1) | |
|00005590| 20 20 20 20 32 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|000055a0| 20 32 0d 0a 00 00 17 4f | 06 0d 0b 00 57 72 6f 6e | 2.....O|....Wron|
|000055b0| 67 2e 20 20 55 73 69 6e | 67 20 11 33 61 20 11 31 |g. Usin|g .3a .1|
|000055c0| 3d 20 31 2c 20 11 33 62 | 20 11 31 3d 20 31 30 2c |= 1, .3b| .1= 10,|
|000055d0| 20 61 6e 64 20 11 33 63 | 20 11 31 3d 20 32 30 2c | and .3c| .1= 20,|
|000055e0| 20 77 65 20 73 6f 6c 76 | 65 20 61 73 20 66 6f 6c | we solv|e as fol|
|000055f0| 6c 6f 77 73 2e 12 30 0d | 0a 00 20 20 20 20 20 20 |lows..0.|.. |
|00005600| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 67 32 32 | | .4g22|
|00005610| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 20 20 20 |22222222|22222 |
|00005620| 20 20 20 20 20 20 20 20 | 67 32 20 20 20 20 20 20 | |g2 |
|00005630| 20 20 20 20 20 20 67 0d | 0b 00 20 20 20 20 20 20 | g.|.. |
|00005640| 20 20 20 20 20 20 20 20 | 20 20 66 20 20 20 20 11 | | f .|
|00005650| 32 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |22 | |
|00005660| 20 20 20 20 20 20 20 11 | 34 66 20 20 20 20 20 20 | .|4f |
|00005670| 20 20 20 20 20 20 20 66 | 20 20 20 20 20 20 20 20 | f| |
|00005680| 20 20 20 67 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | g... | |
|00005690| 11 31 2d 31 30 20 11 34 | 2b 20 76 20 11 31 28 31 |.1-10 .4|+ v .1(1|
|000056a0| 30 29 20 20 2d 20 34 28 | 31 29 28 32 30 29 20 20 |0) - 4(|1)(20) |
|000056b0| 20 2d 31 30 20 11 34 2b | 20 76 20 11 31 32 30 20 | -10 .4+| v .120 |
|000056c0| 20 20 2d 31 30 20 11 34 | 2b 20 11 31 32 11 34 76 | -10 .4|+ .12.4v|
|000056d0| 20 11 31 35 20 20 20 20 | 20 20 20 20 20 11 34 66 | .15 | .4f|
|000056e0| 0d 0b 00 20 20 20 20 20 | 11 33 78 20 11 31 3d 20 |... |.3x .1= |
|000056f0| 11 34 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |.4222222|22222222|
|00005700| 32 32 32 32 32 32 32 32 | 32 32 20 11 31 3d 20 11 |22222222|22 .1= .|
|00005710| 34 32 32 32 32 32 32 32 | 32 32 32 20 11 31 3d 20 |42222222|222 .1= |
|00005720| 11 34 32 32 32 32 32 32 | 32 32 32 32 20 11 31 3d |.4222222|2222 .1=|
|00005730| 20 2d 35 20 11 34 2b 20 | 76 20 11 31 35 0d 0b 00 | -5 .4+ |v .15...|
|00005740| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005750| 20 20 20 32 28 31 29 20 | 20 20 20 20 20 20 20 20 | 2(1) | |
|00005760| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 20 20 | | 2 |
|00005770| 20 20 20 20 20 20 32 0d | 0a 00 00 17 4f 04 0d 0b | 2.|....O...|
|00005780| 00 57 72 6f 6e 67 2e 20 | 20 54 68 65 72 65 20 61 |.Wrong. | There a|
|00005790| 72 65 20 74 77 6f 20 64 | 69 66 66 65 72 65 6e 74 |re two d|ifferent|
|000057a0| 20 72 65 61 6c 20 73 6f | 6c 75 74 69 6f 6e 73 20 | real so|lutions |
|000057b0| 74 6f 20 74 68 69 73 20 | 65 71 75 61 74 69 6f 6e |to this |equation|
|000057c0| 20 73 69 6e 63 65 20 74 | 68 65 20 0d 0a 00 64 69 | since t|he ...di|
|000057d0| 73 63 72 69 6d 69 6e 61 | 6e 74 20 69 73 20 70 6f |scrimina|nt is po|
|000057e0| 73 69 74 69 76 65 2e 20 | 20 54 72 79 20 61 67 61 |sitive. | Try aga|
|000057f0| 69 6e 2e 0d 0a 00 00 17 | 4f 06 0d 0b 00 57 72 6f |in......|O....Wro|
|00005800| 6e 67 2e 20 20 55 73 69 | 6e 67 20 11 33 61 20 11 |ng. Usi|ng .3a .|
|00005810| 31 3d 20 34 39 2c 20 11 | 33 62 20 11 31 3d 20 32 |1= 49, .|3b .1= 2|
|00005820| 38 2c 20 61 6e 64 20 11 | 33 63 20 11 31 3d 20 2d |8, and .|3c .1= -|
|00005830| 36 2c 20 77 65 20 73 6f | 6c 76 65 20 61 73 20 66 |6, we so|lve as f|
|00005840| 6f 6c 6c 6f 77 73 2e 12 | 30 0d 0a 00 20 20 20 20 |ollows..|0... |
|00005850| 20 20 20 20 20 20 20 20 | 20 20 11 34 67 32 32 32 | | .4g222|
|00005860| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 20 20 20 |22222222|22222 |
|00005870| 20 20 20 20 20 20 20 20 | 67 32 32 32 20 20 20 20 | |g222 |
|00005880| 20 20 20 20 20 20 20 20 | 20 67 32 20 20 20 20 20 | | g2 |
|00005890| 20 20 20 20 20 67 32 0d | 0b 00 20 20 20 20 20 20 | g2.|.. |
|000058a0| 20 20 20 20 20 20 20 66 | 20 20 20 20 11 32 32 20 | f| .22 |
|000058b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000058c0| 20 20 20 20 20 11 34 66 | 20 20 20 20 20 20 20 20 | .4f| |
|000058d0| 20 20 20 20 20 20 20 20 | 66 20 20 20 20 20 20 20 | |f |
|000058e0| 20 20 20 20 66 0d 0b 00 | 20 20 20 20 20 20 11 31 | f...| .1|
|000058f0| 2d 32 38 20 11 34 2b 20 | 76 20 11 31 28 32 38 29 |-28 .4+ |v .1(28)|
|00005900| 20 20 2d 20 34 28 34 39 | 29 28 2d 36 29 20 20 20 | - 4(49|)(-6) |
|00005910| 2d 32 38 20 11 34 2b 20 | 76 20 11 31 31 39 36 30 |-28 .4+ |v .11960|
|00005920| 20 20 20 2d 32 38 20 11 | 34 2b 20 11 31 31 34 11 | -28 .|4+ .114.|
|00005930| 34 76 20 11 31 31 30 20 | 20 20 2d 32 20 11 34 2b |4v .110 | -2 .4+|
|00005940| 20 76 20 11 31 31 30 0d | 0b 00 20 20 11 33 78 20 | v .110.|.. .3x |
|00005950| 11 31 3d 20 11 34 32 32 | 32 32 32 32 32 32 32 32 |.1= .422|22222222|
|00005960| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 20 |22222222|2222222 |
|00005970| 11 31 3d 20 11 34 32 32 | 32 32 32 32 32 32 32 32 |.1= .422|22222222|
|00005980| 32 32 20 11 31 3d 20 11 | 34 32 32 32 32 32 32 32 |22 .1= .|42222222|
|00005990| 32 32 32 32 32 20 11 31 | 3d 20 11 34 32 32 32 32 |22222 .1|= .42222|
|000059a0| 32 32 32 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 |22222...| |
|000059b0| 20 20 20 20 20 20 20 20 | 11 31 32 28 34 39 29 20 | |.12(49) |
|000059c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000059d0| 20 39 38 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 98 | |
|000059e0| 39 38 20 20 20 20 20 20 | 20 20 20 20 20 20 37 0d |98 | 7.|
|000059f0| 0a 00 00 17 4f 06 0d 0b | 00 57 72 6f 6e 67 2e 20 |....O...|.Wrong. |
|00005a00| 20 55 73 69 6e 67 20 11 | 33 61 20 11 31 3d 20 34 | Using .|3a .1= 4|
|00005a10| 39 2c 20 11 33 62 20 11 | 31 3d 20 32 38 2c 20 61 |9, .3b .|1= 28, a|
|00005a20| 6e 64 20 11 33 63 20 11 | 31 3d 20 2d 36 2c 20 77 |nd .3c .|1= -6, w|
|00005a30| 65 20 73 6f 6c 76 65 20 | 61 73 20 66 6f 6c 6c 6f |e solve |as follo|
|00005a40| 77 73 2e 12 30 0d 0a 00 | 20 20 20 20 20 20 20 20 |ws..0...| |
|00005a50| 20 20 20 20 20 20 11 34 | 67 32 32 32 32 32 32 32 | .4|g2222222|
|00005a60| 32 32 32 32 32 32 32 32 | 32 20 20 20 20 20 20 20 |22222222|2 |
|00005a70| 20 20 20 20 67 32 32 32 | 20 20 20 20 20 20 20 20 | g222| |
|00005a80| 20 20 20 20 20 67 32 20 | 20 20 20 20 20 20 20 20 | g2 | |
|00005a90| 20 67 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | g2... | |
|00005aa0| 20 20 20 66 20 20 20 20 | 11 32 32 20 20 20 20 20 | f |.22 |
|00005ab0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005ac0| 20 11 34 66 20 20 20 20 | 20 20 20 20 20 20 20 20 | .4f | |
|00005ad0| 20 20 20 20 66 20 20 20 | 20 20 20 20 20 20 20 20 | f | |
|00005ae0| 66 0d 0b 00 20 20 20 20 | 20 20 11 31 2d 32 38 20 |f... | .1-28 |
|00005af0| 11 34 2b 20 76 20 11 31 | 28 32 38 29 20 20 2d 20 |.4+ v .1|(28) - |
|00005b00| 34 28 34 39 29 28 2d 36 | 29 20 20 20 2d 32 38 20 |4(49)(-6|) -28 |
|00005b10| 11 34 2b 20 76 20 11 31 | 31 39 36 30 20 20 20 2d |.4+ v .1|1960 -|
|00005b20| 32 38 20 11 34 2b 20 11 | 31 31 34 11 34 76 20 11 |28 .4+ .|114.4v .|
|00005b30| 31 31 30 20 20 20 2d 32 | 20 11 34 2b 20 76 20 11 |110 -2| .4+ v .|
|00005b40| 31 31 30 0d 0b 00 20 20 | 11 33 78 20 11 31 3d 20 |110... |.3x .1= |
|00005b50| 11 34 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |.4222222|22222222|
|00005b60| 32 32 32 32 32 32 32 32 | 32 32 32 20 11 31 3d 20 |22222222|222 .1= |
|00005b70| 11 34 32 32 32 32 32 32 | 32 32 32 32 32 32 20 11 |.4222222|222222 .|
|00005b80| 31 3d 20 11 34 32 32 32 | 32 32 32 32 32 32 32 32 |1= .4222|22222222|
|00005b90| 32 20 11 31 3d 20 11 34 | 32 32 32 32 32 32 32 32 |2 .1= .4|22222222|
|00005ba0| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00005bb0| 20 20 20 20 11 31 32 28 | 34 39 29 20 20 20 20 20 | .12(|49) |
|00005bc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 39 38 20 | | 98 |
|00005bd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 39 38 20 20 | | 98 |
|00005be0| 20 20 20 20 20 20 20 20 | 20 20 37 0d 0a 00 00 17 | | 7.....|
|00005bf0| 4f 04 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |O. | |
|00005c00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005c10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005c20| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 44 32 32 | | .4D22|
|00005c30| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00005c40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005c50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005c60| 20 20 20 20 20 20 11 31 | 2d 32 20 11 34 2b 20 53 | .1|-2 .4+ S|
|00005c70| 20 11 31 31 30 0d 0b 00 | 52 69 67 68 74 2e 20 20 | .110...|Right. |
|00005c80| 55 73 69 6e 67 20 74 68 | 65 20 51 75 61 64 72 61 |Using th|e Quadra|
|00005c90| 74 69 63 20 46 6f 72 6d | 75 6c 61 2c 20 77 65 20 |tic Form|ula, we |
|00005ca0| 6f 62 74 61 69 6e 20 11 | 33 78 20 11 31 3d 20 11 |obtain .|3x .1= .|
|00005cb0| 34 32 32 32 32 32 32 32 | 32 32 20 11 31 2e 0d 0b |42222222|22 .1...|
|00005cc0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00005cd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005ce0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005cf0| 20 20 20 20 20 20 20 20 | 37 0d 0a 00 00 17 4f 04 | |7.....O.|
|00005d00| 0d 0b 00 53 6f 72 72 79 | 2c 20 74 68 65 72 65 20 |...Sorry|, there |
|00005d10| 61 72 65 20 74 77 6f 20 | 72 65 61 6c 20 73 6f 6c |are two |real sol|
|00005d20| 75 74 69 6f 6e 73 20 74 | 6f 20 74 68 69 73 20 65 |utions t|o this e|
|00005d30| 71 75 61 74 69 6f 6e 20 | 73 69 6e 63 65 20 74 68 |quation |since th|
|00005d40| 65 20 64 69 73 63 72 69 | 6d 69 6e 61 6e 74 0d 0a |e discri|minant..|
|00005d50| 00 69 73 20 70 6f 73 69 | 74 69 76 65 2e 0d 0a 00 |.is posi|tive....|
|00005d60| 00 17 4f 06 0d 0b 00 57 | 72 6f 6e 67 2e 20 20 53 |..O....W|rong. S|
|00005d70| 69 6e 63 65 20 11 33 61 | 20 11 31 3d 20 33 2c 20 |ince .3a| .1= 3, |
|00005d80| 11 33 62 20 11 31 3d 20 | 34 2c 20 61 6e 64 20 11 |.3b .1= |4, and .|
|00005d90| 33 63 20 11 31 3d 20 31 | 2c 20 74 68 65 20 64 69 |3c .1= 1|, the di|
|00005da0| 73 63 72 69 6d 69 6e 61 | 6e 74 20 69 73 20 0d 0a |scrimina|nt is ..|
|00005db0| 00 20 20 20 20 20 20 11 | 32 32 20 20 20 20 20 20 |. .|22 |
|00005dc0| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 11 33 62 | 2...| .3b|
|00005dd0| 20 20 11 31 2d 20 34 11 | 33 61 63 20 11 31 3d 20 | .1- 4.|3ac .1= |
|00005de0| 34 20 20 2d 20 34 28 33 | 29 28 31 29 20 3d 20 31 |4 - 4(3|)(1) = 1|
|00005df0| 36 20 2d 20 31 32 20 3d | 20 34 2e 0d 0a 00 0d 0b |6 - 12 =| 4......|
|00005e00| 00 54 68 65 72 65 66 6f | 72 65 2c 20 74 68 65 72 |.Therefo|re, ther|
|00005e10| 65 20 61 72 65 20 74 77 | 6f 20 64 69 66 66 65 72 |e are tw|o differ|
|00005e20| 65 6e 74 20 72 65 61 6c | 20 73 6f 6c 75 74 69 6f |ent real| solutio|
|00005e30| 6e 73 2e 0d 0a 00 00 17 | 4f 04 0d 0b 00 56 65 72 |ns......|O....Ver|
|00005e40| 79 20 67 6f 6f 64 2e 20 | 20 53 69 6e 63 65 20 74 |y good. | Since t|
|00005e50| 68 65 20 64 69 73 63 72 | 69 6d 69 6e 61 6e 74 20 |he discr|iminant |
|00005e60| 69 73 20 70 6f 73 69 74 | 69 76 65 2c 20 74 68 65 |is posit|ive, the|
|00005e70| 72 65 20 61 72 65 20 74 | 77 6f 20 64 69 66 66 65 |re are t|wo diffe|
|00005e80| 72 65 6e 74 0d 0a 00 72 | 65 61 6c 20 73 6f 6c 75 |rent...r|eal solu|
|00005e90| 74 69 6f 6e 73 20 74 6f | 20 74 68 69 73 20 65 71 |tions to| this eq|
|00005ea0| 75 61 74 69 6f 6e 2e 0d | 0a 00 00 17 4f 04 0d 0b |uation..|....O...|
|00005eb0| 00 57 72 6f 6e 67 2e 20 | 20 54 68 65 72 65 20 69 |.Wrong. | There i|
|00005ec0| 73 20 6e 6f 20 70 6f 73 | 73 69 62 6c 65 20 77 61 |s no pos|sible wa|
|00005ed0| 79 20 61 6e 79 20 71 75 | 61 64 72 61 74 69 63 20 |y any qu|adratic |
|00005ee0| 65 71 75 61 74 69 6f 6e | 20 63 61 6e 20 68 61 76 |equation| can hav|
|00005ef0| 65 20 6d 6f 72 65 20 74 | 68 61 6e 20 0d 0a 00 74 |e more t|han ...t|
|00005f00| 77 6f 20 72 65 61 6c 20 | 73 6f 6c 75 74 69 6f 6e |wo real |solution|
|00005f10| 73 2e 20 20 52 65 76 69 | 65 77 20 47 75 69 64 65 |s. Revi|ew Guide|
|00005f20| 64 20 45 78 61 6d 70 6c | 65 20 38 20 61 6e 64 20 |d Exampl|e 8 and |
|00005f30| 74 68 65 6e 20 74 72 79 | 20 61 67 61 69 6e 2e 0d |then try| again..|
|00005f40| 0a 00 00 17 4f 06 0d 0b | 00 57 72 6f 6e 67 2e 20 |....O...|.Wrong. |
|00005f50| 20 53 69 6e 63 65 20 11 | 33 61 20 11 31 3d 20 33 | Since .|3a .1= 3|
|00005f60| 2c 20 11 33 62 20 11 31 | 3d 20 34 2c 20 61 6e 64 |, .3b .1|= 4, and|
|00005f70| 20 11 33 63 20 11 31 3d | 20 31 2c 20 74 68 65 20 | .3c .1=| 1, the |
|00005f80| 64 69 73 63 72 69 6d 69 | 6e 61 6e 74 20 69 73 20 |discrimi|nant is |
|00005f90| 0d 0a 00 20 20 20 20 20 | 20 11 32 32 20 20 20 20 |... | .22 |
|00005fa0| 20 20 20 20 20 20 32 0d | 0b 00 20 20 20 20 20 11 | 2.|.. .|
|00005fb0| 33 62 20 20 11 31 2d 20 | 34 11 33 61 63 20 11 31 |3b .1- |4.3ac .1|
|00005fc0| 3d 20 34 20 20 2d 20 34 | 28 33 29 28 31 29 20 3d |= 4 - 4|(3)(1) =|
|00005fd0| 20 31 36 20 2d 20 31 32 | 20 3d 20 34 2e 0d 0a 00 | 16 - 12| = 4....|
|00005fe0| 0d 0b 00 54 68 65 72 65 | 66 6f 72 65 2c 20 74 68 |...There|fore, th|
|00005ff0| 65 72 65 20 61 72 65 20 | 74 77 6f 20 64 69 66 66 |ere are |two diff|
|00006000| 65 72 65 6e 74 20 72 65 | 61 6c 20 73 6f 6c 75 74 |erent re|al solut|
|00006010| 69 6f 6e 73 2e 0d 0a 00 | 00 17 4f 03 0d 0b 00 43 |ions....|..O....C|
|00006020| 6f 72 72 65 63 74 2e 20 | 20 43 68 65 63 6b 20 74 |orrect. | Check t|
|00006030| 68 65 73 65 20 74 77 6f | 20 73 6f 6c 75 74 69 6f |hese two| solutio|
|00006040| 6e 73 20 69 6e 20 74 68 | 65 20 6f 72 69 67 69 6e |ns in th|e origin|
|00006050| 61 6c 20 65 71 75 61 74 | 69 6f 6e 2e 0d 0a 00 00 |al equat|ion.....|
|00006060| 17 4f 06 0d 0b 00 57 72 | 6f 6e 67 2e 20 20 55 73 |.O....Wr|ong. Us|
|00006070| 69 6e 67 20 11 33 61 20 | 11 31 3d 20 32 35 2c 20 |ing .3a |.1= 25, |
|00006080| 11 33 62 20 11 31 3d 20 | 37 30 2c 20 61 6e 64 20 |.3b .1= |70, and |
|00006090| 11 33 63 20 11 31 3d 20 | 34 34 2c 20 77 65 20 73 |.3c .1= |44, we s|
|000060a0| 6f 6c 76 65 20 61 73 20 | 66 6f 6c 6c 6f 77 73 2e |olve as |follows.|
|000060b0| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|000060c0| 20 20 20 11 34 67 32 32 | 32 32 32 32 32 32 32 32 | .4g22|22222222|
|000060d0| 32 32 32 32 32 32 20 20 | 20 20 20 20 20 20 20 20 |222222 | |
|000060e0| 20 67 32 32 20 20 20 20 | 20 20 20 20 20 20 20 20 | g22 | |
|000060f0| 20 67 20 20 20 20 20 20 | 20 20 20 20 67 0d 0b 00 | g | g...|
|00006100| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 66 20 20 | | f |
|00006110| 20 20 11 32 32 20 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00006120| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 66 20 20 | | .4f |
|00006130| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 66 20 20 | | f |
|00006140| 20 20 20 20 20 20 20 20 | 66 0d 0b 00 20 20 20 20 | |f... |
|00006150| 20 20 11 31 2d 37 30 20 | 11 34 2b 20 76 20 11 31 | .1-70 |.4+ v .1|
|00006160| 28 37 30 29 20 20 2d 20 | 34 28 32 35 29 28 34 34 |(70) - |4(25)(44|
|00006170| 29 20 20 20 2d 37 30 20 | 11 34 2b 20 76 20 11 31 |) -70 |.4+ v .1|
|00006180| 35 30 30 20 20 20 2d 37 | 30 20 11 34 2b 20 11 31 |500 -7|0 .4+ .1|
|00006190| 31 30 11 34 76 20 11 31 | 35 20 20 20 20 37 20 20 |10.4v .1|5 7 |
|000061a0| 20 11 34 76 20 11 31 35 | 0d 0b 00 20 20 11 33 68 | .4v .15|... .3h|
|000061b0| 20 11 31 3d 20 11 34 32 | 32 32 32 32 32 32 32 32 | .1= .42|22222222|
|000061c0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000061d0| 20 11 31 3d 20 11 34 32 | 32 32 32 32 32 32 32 32 | .1= .42|22222222|
|000061e0| 32 32 20 11 31 3d 20 11 | 34 32 32 32 32 32 32 32 |22 .1= .|42222222|
|000061f0| 32 32 32 32 20 11 31 3d | 20 2d 11 34 32 20 2b 20 |2222 .1=| -.42 + |
|00006200| 32 32 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |222... | |
|00006210| 20 20 20 20 20 20 11 31 | 32 28 32 35 29 20 20 20 | .1|2(25) |
|00006220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 35 30 | | 50|
|00006230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 35 30 20 | | 50 |
|00006240| 20 20 20 20 20 20 20 35 | 20 20 20 20 20 35 0d 0a | 5| 5..|
|00006250| 00 00 17 4f 06 0d 0b 00 | 57 72 6f 6e 67 2e 20 20 |...O....|Wrong. |
|00006260| 55 73 69 6e 67 20 11 33 | 61 20 11 31 3d 20 32 35 |Using .3|a .1= 25|
|00006270| 2c 20 11 33 62 20 11 31 | 3d 20 37 30 2c 20 61 6e |, .3b .1|= 70, an|
|00006280| 64 20 11 33 63 20 11 31 | 3d 20 34 34 2c 20 77 65 |d .3c .1|= 44, we|
|00006290| 20 73 6f 6c 76 65 20 61 | 73 20 66 6f 6c 6c 6f 77 | solve a|s follow|
|000062a0| 73 2e 12 30 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |s..0... | |
|000062b0| 20 20 20 20 20 11 34 67 | 32 32 32 32 32 32 32 32 | .4g|22222222|
|000062c0| 32 32 32 32 32 32 32 32 | 20 20 20 20 20 20 20 20 |22222222| |
|000062d0| 20 20 20 67 32 32 20 20 | 20 20 20 20 20 20 20 20 | g22 | |
|000062e0| 20 20 20 67 20 20 20 20 | 20 20 20 20 20 20 67 0d | g | g.|
|000062f0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 66 |.. | f|
|00006300| 20 20 20 20 11 32 32 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00006310| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 34 66 | | .4f|
|00006320| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 66 | | f|
|00006330| 20 20 20 20 20 20 20 20 | 20 20 66 0d 0b 00 20 20 | | f... |
|00006340| 20 20 20 20 11 31 2d 37 | 30 20 11 34 2b 20 76 20 | .1-7|0 .4+ v |
|00006350| 11 31 28 37 30 29 20 20 | 2d 20 34 28 32 35 29 28 |.1(70) |- 4(25)(|
|00006360| 34 34 29 20 20 20 2d 37 | 30 20 11 34 2b 20 76 20 |44) -7|0 .4+ v |
|00006370| 11 31 35 30 30 20 20 20 | 2d 37 30 20 11 34 2b 20 |.1500 |-70 .4+ |
|00006380| 11 31 31 30 11 34 76 20 | 11 31 35 20 20 20 20 37 |.110.4v |.15 7|
|00006390| 20 20 20 11 34 76 20 11 | 31 35 0d 0b 00 20 20 11 | .4v .|15... .|
|000063a0| 33 68 20 11 31 3d 20 11 | 34 32 32 32 32 32 32 32 |3h .1= .|42222222|
|000063b0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000063c0| 32 32 20 11 31 3d 20 11 | 34 32 32 32 32 32 32 32 |22 .1= .|42222222|
|000063d0| 32 32 32 32 20 11 31 3d | 20 11 34 32 32 32 32 32 |2222 .1=| .422222|
|000063e0| 32 32 32 32 32 32 20 11 | 31 3d 20 2d 11 34 32 20 |222222 .|1= -.42 |
|000063f0| 2b 20 32 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 |+ 222...| |
+--------+-------------------------+-------------------------+--------+--------+
Only 25.0 KB of data is shown above.